Skip to main content
Log in

The influence of low pH on in vitro growth and biochemical parameters of Plantago almogravensis and P. algarbiensis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The effects of low medium pH (4.50, 5.00 and 5.75) on in vitro growth and on several biochemical parameters (lipid peroxidation, proline and carbohydrate content, antioxidant enzymes activities and total soluble protein) of Plantago almogravensis and P. algarbiensis micropropagated shoots were investigated. Overall, it was observed that medium pH did not affect in vitro proliferation and rooting. Interestingly, cultures of both species modify the initial pH value to the same final value. Results have shown that the lowest pH tested induced an increase in the level of lipid peroxidation in roots of both species and in shoots of P. algarbiensis, indicating plasma membrane damage. An accumulation of carbohydrates was observed in roots of P. almogravensis cultured in pH 4.50 and 5.00. It was observed a slight response of the enzymatic system to medium pH, particularly in P. almogravensis. Based on the results obtained we can conclude that Plantago species are apt to grow in vitro in medium with pH values much lower than the usually used in tissue culture, which is in agreement with the fact that both species colonize acid soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Al:

Aluminum

APX:

Ascorbate peroxidase

BA:

6-benzyladenine

CAT:

Catalase

FW:

Fresh weight

GPX:

Guaiacol peroxidase

IAA:

Indole-3-acetic acid

MDA:

Malondialdehyde

MS:

Murashige and Skoog

NBT:

Nitroblue tetrazolium

Pro:

Proline

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Abbasi BH, Khan M, Guo B, Bokhari SA, Khan MA (2011) Efficient regeneration and antioxidative enzyme activities in Brassica rapa var. turnip. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-010-9872-8

  • Aebi HE (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinhern, pp 273–286

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and assays applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bennet IJ, McDavid DAJ, McComb JA (2003) The influence of ammonium nitrate, pH and indole butyric acid on root induction and survival in soil of micropropagated Eucalyptus globules. Biol Plant 47:355–360

    Article  Google Scholar 

  • Bhatia P, Ashwath N (2005) Effect of medium pH on shoot regeneration from the cotyledonary explants of Tomato. Biotechnology 4:7–10

    Article  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2010) Aluminum-dependent Dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses. Physiol Plant 139:401–412

    PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Branquinho C, Serrano HC, Pinto MJ, Martins-Loução MA (2007) Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environ Pollut 146:437–443

    Article  PubMed  CAS  Google Scholar 

  • Buurman P, Jongmans AG (2002) Podzolization—an additional paradigm. Edafologia 9:107–114

    Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation stress-mitigating affects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  PubMed  CAS  Google Scholar 

  • Çiçek N, Çakirlar H (2008) Changes in some antioxidant enzyme activities in six soyben cultivars in response to long-term salinity at two different temperatures. Gen Appl Plant Physiol 34:267–280

    Google Scholar 

  • Costa MA, Pinheiro HA, Shimizu ESC, Fonseca FT, Filho BGS, Moraes FKC, Figueiredo DM (2010) Lipid peroxidation, chloroplastic pigments and antioxidant strategies in Carapa guianensis (Aubl.) subjected to water-deficit and short-term rewetting. Trees 24:275–283

    Article  CAS  Google Scholar 

  • Cui X-H, Murthy HN, Wu C-H, Paek K-Y (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Cult 103:7–14

    Article  CAS  Google Scholar 

  • Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem (Anal ed) 18:499

    Article  CAS  Google Scholar 

  • Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta 157:224–232

    Article  CAS  Google Scholar 

  • Fageria N, Baligar VC, Li Y (2009) Differential soil acidity tolerance of tropical legume cover crops. Commun Soil Sci Plan 40:1148–1160

    Article  CAS  Google Scholar 

  • Foy CD (1992) Soil chemical factors limiting plant root growth. In: Hatfield JL, Stewart BA (eds) Limitations to plant root growth. Springer-Verlag, New York, pp 97–149

    Chapter  Google Scholar 

  • Geneve RL, Heuser CW (1982) The effect of IAA, IBA, NAA and 2.4-D on root promotion and ethylene evolution in Vigna radiata cuttings. J Amer Soc Hort Sci 107:202–205

    CAS  Google Scholar 

  • Ghnaya AB, Hourmant A, Cerantola S, Kervarec N, Cabon JY, Branchard M, Charles G (2010) Influence of zinc on soluble carbohydrate and free amino acid levels in rapeseed plants regenerated in vitro in the presence of zinc. Plant Cell Tissue Organ Cult 102:191–197

    Article  Google Scholar 

  • Gonçalves S, Martins N, Romano A (2009) Micropropagation and conservation of endangered species Plantago algarbiensis and P. almogravensis. Biol Plant 53:774–778

    Article  Google Scholar 

  • Hauter R, Mengel K (1988) Measurement of pH at the root surface of red clover (Trifolium pratense) grown in soils differing in proton buffer capacity. Biol Fert Soils 5:295–298

    Article  CAS  Google Scholar 

  • He Y, Huang B (2007) Protein changes during heat stress in three Kentucky bluegrass cultivars differing in heat tolerance. Crop Sci 47:2513–2520

    Article  CAS  Google Scholar 

  • Hew CS, Yong WH (1997) The physiology of tropical orchids in relation to the industry. World Scientific, Singapore, p 289

    Book  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • ICN (2007) Plano Nacional da Flora em Perigo (1ª fase). Life Natureza III P\8480 report. Volume IV

  • Kidd PS, Proctor J (2001) Why plants grow poorly on very acid soils: are ecologists missing the obvious? J Exp Bot 52:791–799

    Article  PubMed  CAS  Google Scholar 

  • Koyama H, Toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin-Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot 52:361–368

    Article  PubMed  CAS  Google Scholar 

  • Lazof DB, Holland MJ (1999) Evaluation of the aluminium induced root growth inhibition in isolation from low pH effects in Glycine max, Pisum sativum, and Phaseolus vulgaris. Aust J Plant Physiol 26:147–157

    Article  CAS  Google Scholar 

  • Leifert C, Pryce S, Lumsden PJ, Waites WM (1992) Effect of medium acidity on growth and rooting of different plant species in vitro. Plant Cell Tissue Organ Cult 30:171–179

    Article  Google Scholar 

  • Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98

    Article  PubMed  CAS  Google Scholar 

  • Llugany M, Poschenrieder C, Barceló J (1995) Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity. Physiol Plant 93:265–271

    Article  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Penna S (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 102:17–25

    Article  Google Scholar 

  • Magné C, Larher F (1992) High sugar content of extracts interferes with colorimetric determination of aminoacid and free proline. Anal Biochem 200:115–118

    Article  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner H, Römheld V, Horst WJ, Martin P (1986) Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants. Z Pflanzenernaehr Bodenkd 149:441–456

    Article  CAS  Google Scholar 

  • Minocha SC (1987) pH of the medium and growth and metabolism of cells in culture. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol. 1, general principles and biotechnology, vol 1. Martinus Nijhoff Publishers, Dordrecht, pp 125–144

    Google Scholar 

  • Murashige T, Shoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naik PM, Manohar SH, Praveen N, Murthy HN (2010) Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots. Plant Cell Tissue Organ Cult 100:235–239

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Osaki M, Watanabe T, Tadano T (1997) Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Sci Plant Nutr 43:551–563

    CAS  Google Scholar 

  • Pavlovkin J, Pal’ove-Balanga P, Kolarovič L, Zelinová V (2009) Growth and functional responses of different cultivars of Lotus corniculatus to aluminum and low pH stress. J Plant Physiol 166:1479–1487

    Article  PubMed  CAS  Google Scholar 

  • Reddy AR, Chiatanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294

    Article  PubMed  CAS  Google Scholar 

  • Schuch MW, Cellini A, Masia A, Marino G (2010) Aluminium-induced effects on growth, morphogenesis and oxidative stress reactions in in vitro cultures of quince. Sci Hortic 125:151–158

    Article  CAS  Google Scholar 

  • Shibli RA, Mohammad MJ, Ajlouni MM, Shatnawi MA, Obeidat AF (1999) Stability of chemical parameters of tissue culture medium (pH, osmolarity, electrical conductivity) as a function of time of growth. J Plant Nutr 22:501–510

    Article  CAS  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    PubMed  CAS  Google Scholar 

  • Sivanesan I, Song JY, Hwang SJ, Jeong BR (2011) Micropropagation of Cotoneaster wilsonii Nakai—a rare endemic ornamental plant. Plant Cell Tissue Organ Cult 105:55–63

    Article  Google Scholar 

  • Skirvin RM, Chu MC, Mann ML, Young H, Sullivan J, Fermanian T (1986) Stability of tissue culture medium pH as a function of autoclaving, time, and cultured plant material. Plant Cell Rep 5:292–294

    Article  Google Scholar 

  • Somboonwatthanaku I, Dorling S, Leung S, McManus MT (2010) Proline biosynthetic gene expression in tissue cultures of rice (Oryza sativa L.) in response to saline treatment. Plant Cell Tissue Organ Cult 103:369–376

    Article  CAS  Google Scholar 

  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    PubMed  CAS  Google Scholar 

  • Xu X-Y; Shi G-X, Wang J, Zhang L-l, Kang Y-N (2011) Copper-induced oxidative stress in Alternanthera philoxeroides callus. Plant Cell Tissue Organ Cult (in press). doi: 10.1007/s11240-010-9914-2

  • Xu J, Wang Y, Zhang Y, Chai T (2008) Rapid in vitro multiplication and ex vitro rooting of Malus zumi (Matsumura) Rehd. Acta Physiol Plant 30:129–132

    Article  CAS  Google Scholar 

  • Yan F, Schubert S, Mengel K (1992) Effect of low root medium pH on net proton release, root respiration, and root-growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol 99:415–421

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Shi R, Wei X, Fan Q, An L (2010) Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr. Plant Cell Tissue Organ Cult 102:387–395

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

N. Martins and S. Gonçalves acknowledge a grant from the Portuguese Science and Technology Foundation (FCT, SFRH/BD/48379/2008 and Grant SFRH/BPD/31534/2006, respectively). This work was supported by the FCT project PTDC/AGR-AAM/102664/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabela Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, N., Gonçalves, S., Palma, T. et al. The influence of low pH on in vitro growth and biochemical parameters of Plantago almogravensis and P. algarbiensis . Plant Cell Tiss Organ Cult 107, 113–121 (2011). https://doi.org/10.1007/s11240-011-9963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9963-1

Keywords

Navigation