Skip to main content
Log in

Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Key factors influencing the efficiency of transformation of embryogenic cultures, induced from immature zygotic embryos, of avocado cv. ‘Duke 7’ were evaluated. Initially, the sensitivity of somatic embryos to the antibiotics kanamycin, used for selection, carbenicillin, cefotaxime and timentin, all used for elimination of Agrobacterium cells, were evaluated. Isolated globular somatic embryos were more sensitive to kanamycin than embryogenic masses, and 25 mg l−1 kanamycin completely restricted callus proliferation. Cefotaxime at 500 mg l−1 partially inhibited proliferation of embryogenic cultures, while both carbenicillin and timentin did not affect callus growth. For genetic transformation, somatic embryos were infected with A. tumefaciens containing the pBINUbiGUSint plasmid. After 2 days, the embryos were transferred to selection medium supplemented with 50 mg l−1 kanamycin and 250 mg l−1 timentin for 2 months. Then, kanamycin level was increased to 100 mg l−1 for two additional months. The A. tumefaciens strain AGL1 yielded higher transformation rates, 6%, than EHA105 or LBA4404, 1.2%. The percentage of kanamycin resistant calli obtained was significantly influenced by the embryogenic line used as source of explants. Genetic transformation was confirmed by PCR and Southern blot analysis. A significant improvement in the germination rate was obtained when transgenic embryos were cultured in liquid MS medium with 4.44 μM BA and 2.89 μM GA3 for 3 days in a roller drum and later transferred to the same medium gelled with 7 g l−1 agar. Plants from five independent transgenic lines were acclimated and grown in the greenhouse, being phenotipically similar to control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

GA3 :

Gibberellic acid

MS:

Murashige and Skoog medium

MSP:

Embryogenic avocado culture medium

SE:

Somatic embryo

References

  • Álvarez R, Alonso P, Cortizo M, Celestino C, Hernández I, Toribio M, Ordás RJ (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223

    Article  PubMed  Google Scholar 

  • Barceló-Muñoz A, Encina CL, Simón-Pérez E, Pliego-Alfaro F (1999) Micropropagation of adult avocado. Plant Cell Tiss Organ Cult 58:11–17

    Article  Google Scholar 

  • Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2010) Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum Linn.). Plant Cell Tiss Organ Cult 102:153–162

    Article  CAS  Google Scholar 

  • Chanderbali AS, Albert VA, Ashworth VETM, Clegg MT, Litz RE, Soltis DE, Soltis PS (2008) Persea americana (avocado): bringing ancient flowers to fruit in the genomics era. BioEssays 30:386–396

    Article  PubMed  Google Scholar 

  • Chen AH, Yang JL, Niu YD, Yang CP, Liu GF, Yu CY, Li CH (2010) High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3, and BA on somatic embryo development. Plant Cell Tiss Organ Cult 102:357–364

    Article  CAS  Google Scholar 

  • Cruz-Hernández A, Witjaksono, Litz RE, Gomez-Lim M (1998) Agrobacterium tumefaciens—mediated transformation of embryogenic avocado cultures and regeneration of somatic embryos. Plant Cell Rep 17:497–503

    Article  Google Scholar 

  • Etienne H, Bertrand B (2003) Somaclonal variation in Coffea arabica: effects of genotype and embryogenic cell suspension age on frequency and phenotype of variants. Tree Physiol 23:419–426

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2010) http://faostat.fao.org/

  • Gamborg OL, Miller RA, Ojima K (1968) Plant cell cultures. I. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowit EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    Article  CAS  PubMed  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  PubMed Central  Google Scholar 

  • Holford P, Newbury H (1992) The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Rep 11:93–96

    CAS  PubMed  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humara J, Martín MS, Parra F, Ordás RJ (1999) Improved efficiency of uidA gene transfer in stone pine (Pinus pinea) cotyledons using a modified binary vector. Can J For Res 29:1627–1632

    Article  CAS  Google Scholar 

  • Husaini AM (2010) Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep 29:97–110

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimaeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ahlman A, Yan X, Lindgren H, Zhu L-H (2010) Genetic transformation of the oilseed crop Crambe abyssinica. Plant Cell Tiss Organ Cult 100:149–156

    Article  CAS  Google Scholar 

  • Litz RE, Witjaksono, Raharjo S, Efendi D, Pliego-Alfaro F, Barceló-Muñoz A (2005) Persea americana avocado. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, Wallingford, pp 326–347

    Chapter  Google Scholar 

  • Litz RE, Raharjo SHT, Gómez-Lim MA (2007) Avocado. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry. Springer, Berlin, pp 167–187

    Google Scholar 

  • Márquez-Martín B, Sesmero R, Quesada MA, Pliego-Alfaro F, Sánchez-Romero C (2011) Water relations in culture media influence maturation of avocado somatic embryos. J Plant Physiol 168:2028–2034

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nauerby B, Billing K, Wyndaele R (1997) Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci 123:169–177

    Article  CAS  Google Scholar 

  • Newett SDE, Crane JH, Balerdi CF (2002) Cultivars and rootstocks. In: Whiley AW, Schaffer B, Wolstenholme BN (eds) The avocado: botany, production and uses. CABI Publishing, Wallingford, pp 161–187

    Chapter  Google Scholar 

  • Padilla IMG, Burgos L (2010) Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Parimalan R, Venugopalan A, Giridhar P, Ravishankar GA (2011) Somatic embryogenesis and Agrobacterium-mediated transformation in Bixa orellana L. Plant Cell Tiss Organ Cult 105:317–328

    Article  CAS  Google Scholar 

  • Pérez-Barranco G, Torreblanca R, Padilla IMG, Sánchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection. II. Transient transformation via particle bombardment. Plant Cell Tiss Organ Cult 97:243–251

    Article  Google Scholar 

  • Pliego C, Kanematsu S, Ruano-Rosa D, de Vicente A, López-Herrera C, Cazorla FM, Ramos C (2009) GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Gen Biol 46:137–145

    Article  CAS  Google Scholar 

  • Pliego-Alfaro F, Murashige T (1987) Possible rejuvenation of adult avocado by graftage on to juvenile rootstocks in vitro. HortSci 22:1321–1324

    Google Scholar 

  • Pliego-Alfaro F, Murashige T (1988) Somatic embryogenesis in avocado (Persea americana Mill.) in vitro. Plant Cell Tiss Organ Cult 12:61–66

    Article  CAS  Google Scholar 

  • Raharjo SHT, Witjaksono, Gomez-Lim MA, Padilla G, Litz RE (2008) Recovery of avocado (Persea americana Mill.) plants transformed with the antifungal plant defensin gene PDF1.2. In Vitro Cell Dev Biol Plant 44:254–262

    Article  CAS  Google Scholar 

  • Sánchez-Romero C, Márquez-Martín B, Pliego-Alfaro F (2005) Somatic and zygotic embryogenesis in avocado. In: Mujib A, Samaj J (eds) Somatic embryogenesis. Springer, Berlin, pp 271–283

    Google Scholar 

  • Sarma KS, Evans NE, Selby C (1995) Effect of carbenicillin and cefotaxime on somatic embryogenesis of Sitka spruce (Picea sitchensis (Bong.) Carr.). J Exp Bot 46:1779–1781

    Article  CAS  Google Scholar 

  • Shehata AM, Wannarat W, Skirvin RM, Norton MA (2010) The dual role of carbenicillin in shoot regeneration and somatic embryogenesis of horseradish (Armoracia rusticana) in vitro. Plant Cell Tiss Organ Cult 102:397–402

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman and Company, New York

    Google Scholar 

  • Srinivasan C, Scorza R (1999) Transformation of somatic embryos of fruit trees and grapevine. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer, Berlin, pp 313–330

    Chapter  Google Scholar 

  • Tang H, Zen R, Krczal G (2000) An evaluation of antibiotics for the elimination of Agrobacterium tumefaciens from walnut somatic embryos and for the effects on the proliferation of somatic embryos and regeneration of transgenic plants. Plant Cell Rep 19:881–887

    Article  CAS  Google Scholar 

  • Torreblanca R, Cerezo S, Palomo-Ríos E, Mercado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tiss Organ Cult 103:61–69

    Article  CAS  Google Scholar 

  • ur Rahman L, Ikenaga T, Kitamura Y (2004) Penicillin derivatives induce chemical structure-dependent root development, and application for plant transformation. Plant Cell Rep 22:668–677

    Article  CAS  PubMed  Google Scholar 

  • Von Arnold S (2008) Somatic embryogenesis. In: George EF, Hall MA, De Klerk G-J (eds) Plant propagation by tissue culture, 3rd edn, vol. 1, the background. Springer, Dordrecht, pp 335–354

    Google Scholar 

  • Weir B, Gu X, Wang M, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818

    CAS  Google Scholar 

  • Witjaksono, Litz RE (1999a) Maturation of avocado somatic embryos and plant recovery. Plant Cell Tiss Organ Cult 58:141–149

    Article  Google Scholar 

  • Witjaksono, Litz RE (1999b) Induction and growth characteristics of embryogenic avocado cultures. Plant Cell Tiss Organ Cult 58:19–29

    Article  Google Scholar 

  • Yang Y, Bao M, Liu G (2010) Factors affecting Agrobacterium-mediated genetic transformation of embryogenic callus of Parthenocissus tricuspidata Planch. Plant Cell Tiss Organ Cult 102:373–380

    Article  CAS  Google Scholar 

  • Youssef SM, Jiménez-Bermúdez S, Luz Bellido M, Martín-Pizarro C, Barceló M, Abdal-Aziz SA, Caballero JL, López-Aranda JM, Pliego-Alfaro F, Muñoz J, Quesada MA, Mercado JA (2009) Fruit yield and quality of strawberry plants transformed with a fruit specific strawberry pectate lyase gene. Sci Hort 119:120–125

    Article  CAS  Google Scholar 

  • Zhang B-H, Liu F, Liu Z-H, Wang H-M, Yao C-B (2001) Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Plant Growth Regul 33:137–149

    Article  Google Scholar 

  • Zhao W, Zheng S, Ling H-Q (2011) An efficient regeneration system and Agrobacterium-mediated transformation of Chinese upland rice cultivar Handao297. Plant Cell Tiss Organ Cult 106:475–483

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Ministerio de Ciencia e Innovación of Spain and Feder European Union Funds (Grant No. AGL2008-05453-C02-01/AGR). The authors thank Dr. Ricardo J. Ordás, Universidad de Oviedo, Spain, for providing the AGL1 strain with the pBINUbiGUSint plasmid, and Dr. Clara Pliego for her valuable support in the molecular analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Mercado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palomo-Ríos, E., Barceló-Muñoz, A., Mercado, J.A. et al. Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.). Plant Cell Tiss Organ Cult 109, 201–211 (2012). https://doi.org/10.1007/s11240-011-0086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0086-5

Keywords

Navigation