Skip to main content
Log in

Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Cell suspension cultures of red spruce (Picea rubens Sarg.) were selected to study the effects of cadmium (Cd) and zinc (Zn) on phytochelatins (PCs) and related metabolites after 24 h exposure. The PC2 and its precursor, γ-glutamylcysteine (γ-EC) increased two to fourfold with Cd concentrations ranging from 12.5 to 200 μM as compared to the control. However, Zn-treated cells showed a less than twofold increase in γ-EC and PC2 levels as compared to the control even at the highest concentration of 800 μM. In addition, unidentified higher chain PCs were also found in both the Cd and Zn treated cells and they increased significantly with increasing concentrations of Cd and Zn. The cellular ratio of PC2 : Cd or Zn content clearly indicated that Cd (with ratios ranging from 0.131 to 0.546) is a more effective inducer of PC2 synthesis/accumulation than Zn (with ratios ranging from 0.032 to 0.102) in red spruce cells. A marginal decrease in glutathione (GSH) was observed in both Cd and Zn treated cells. However, the GSH precursor, cysteine, declined twofold with all Cd concentrations while the decrease with Zn was 1.5–2-fold only at the higher treatment concentrations of Zn as compared to control. In addition, changes in other free amino acids, polyamines, and inorganic ions were also studied. These results suggest that PCs and their biosynthetic intermediates play a significant role in red spruce cells protecting against Cd and Zn toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

γ-EC:

γ-glutamylcysteine

GSH:

Glutathione

HPLC:

High-performance liquid chromatography

mBBr:

Monobromobimane

NAC:

N-acetyl-l-cysteine

PCs:

Phytochelatins

TFA:

Trifluroacetic acid

References

  • Baker AJM, Ewart K, Hendry GAF, Thorpe PC, Walker PL (1990) The evolutionary basis of cadmium tolerance in higher plants. Paper presented at the 4th International Conference on Environmental Contamination, Barcelona, Spain, pp 23–29

  • Bauer GA, Bazzaz FA, Minocha R, Long S, Magill A, Aber J, Berntson GM (2004) Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. For Ecol Manage 196:173–186

    Article  Google Scholar 

  • Bittsanszky A, Komives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    Article  PubMed  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Ryan JA, Li YM, Welch RM, Reeves PG, Brown SL, Green CE (1995) Phytoavailability and bioavailability in risk assessment for Cd in agricultural environments. In: Proceeding of OECD cadmium workshop, stockholm, Sweden, pp 1–28

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Costa G, Spitz E (1997) Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci 128:131–140

    Article  CAS  Google Scholar 

  • Delhaize E, Jackson PJ, Lujan LD, Robinson NJ (1989) Poly(γ-glutamylcysteinyl)glycine synthesis in Datura innoxia and binding with cadmium. Role in cadmium tolerance. Plant Physiol 89:700–706

    PubMed  CAS  Google Scholar 

  • Di Baccio D, Kopriva S, Sebastiani L, Rennenberg H (2005) Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytol 167:73–80

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Rennenberg H (2000) Regulation of glutathione synthesis and its role in abiotic and biotic stress defense. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian JC (eds) Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects. Paul Hapt, Bern, pp 127–153

    Google Scholar 

  • Galili G, Höfgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    Article  PubMed  CAS  Google Scholar 

  • Gallego M, Kogan MJ, Azpilicueta CE, Pena C, Tomaro ML (2005) Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annus L.) cells in response to cadmium stress. Plant Growth Regul 46:267–276

    Article  CAS  Google Scholar 

  • Gawel JE, Ahner BA, Friedland AJ, Morel FMM (1996) Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature 381:64–65

    Article  CAS  Google Scholar 

  • Gawel JE, Trick CG, Morel FMM (2001) Phytochelatins are bioindicators of atmospheric metal exposure via direct foliar uptake in trees near Sudbury, Ontario, Canada. Environ Sci Technol 35:2108–2113

    Article  PubMed  CAS  Google Scholar 

  • Gawel JE, Hemond HF (2004) Biomonitoring for metal contamination near two Superfund sites in Woburn, Massachusetts, using phytochelatins. Environ Pollut 131:125–135

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1988a) Occurrence of heavy metal binding phytochelatins in plants growing in a mining refuse area. Experimentia 44:539–540

    Article  CAS  Google Scholar 

  • Grill E, Thumann J, Winnacker EL, Zenk MH (1988b) Induction of heavy-metal binding phytochelatins by inoculation of cell cultures in standard media. Plant Cell Rep 7:375–378

    CAS  Google Scholar 

  • Gussarsson M (1994) Cadmium-induced alterations in nutrient composition and growth of Betula pendula seedlings: the significance of fine root as a primary target for cadmium toxicity. J Plant Nutr 17:2151–2163

    CAS  Google Scholar 

  • Gussarsson M, Asp H, Adalsteinsson S, Jensén P (1996) Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO). J Exp Bot 47:211–215

    Article  CAS  Google Scholar 

  • Gzyl J, Gwóźdź EA (2005) Selection in vitro and accumulation of phytochelatins in cadmium tolerant cell line of cucumber (Cucumis sativus). Plant Cell Tissue Organ Cult 80:59–67

    Article  CAS  Google Scholar 

  • Hirata K, Tsujimoto Y, Namba T, Ohta T, Hirayanagi N, Miyasaka H, Zenk MH, Miyamoto K (2001) Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta. J Biosci Bioeng 92:24–29

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Arch Environ Contam Toxicol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Article  Google Scholar 

  • Kawakami SK, Gledhill M, Achterberg EP (2006) Effects of metal combinations on the production of phytochelatins and glutathione by the marine diatom Phaeodactylum tricornutum. Biometals 19:51–60

    Article  PubMed  CAS  Google Scholar 

  • Keltjens WG, van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–126

    Article  CAS  Google Scholar 

  • Koprivova A, Kopriva S, Jager D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670

    Article  CAS  Google Scholar 

  • Koricheva J, Roy S, Vranjic JA, Haukioja E, Hughes PR, Hänninen O (1997) Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ Pollut 95:249–258

    Article  PubMed  CAS  Google Scholar 

  • Landberg T, Greger M (2004) No phytochelatin (PC2 and PC3) detected in Salix viminalis. Physiol Plant 121:481–487

    Article  CAS  Google Scholar 

  • Le Faucheur S, Behra R, Sigg L (2005) Thiol and metal contents in periphyton exposed to elevated copper and zinc concentrations: a field and microcosm study. Environ Sci Technol 39:8099–8107

    Article  PubMed  CAS  Google Scholar 

  • Leopold I, Günther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328

    Article  CAS  Google Scholar 

  • Leskó K, Simon-Sarkadi L (2002) Effect of cadmium stress on amino acid and polyamine content of wheat seedlings. Periodica Polytechnica Ser Chem Eng 46:65–71

    Google Scholar 

  • Lima AIS, Pereira SIA, Figueira EMAP, Caldeira GCN, Caldeira HDQM (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot 55:149–162

    Article  CAS  Google Scholar 

  • Litvay JD, Johnson MA, Verma DC, Einspahr D, Weyrauch K (1981) Conifer suspension culture medium development using analytical data from developing seeds. Inst Pap Chem Tech Pap Ser 115:1–17

    Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328

    Article  CAS  Google Scholar 

  • Maier EA, Matthews RD, McDowell JA, Walden RR, Ahner BA (2003) Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient solution. J Environ Qual 32:1356–1364

    Article  PubMed  CAS  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatins and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed  CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Moreno-Sánchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238:919–936

    Article  PubMed  CAS  Google Scholar 

  • Minocha R, Shortle WC, Long S, Minocha SC (1994) A rapid and reliable procedure for extraction of cellular polyamines and inorganic ions from plant tissues. J Plant Growth Regul 13:187–193

    Article  CAS  Google Scholar 

  • Minocha R, Shortle WC, Coughlin DJ, Minocha SC (1996) Effects of Al on growth, polyamine metabolism, and inorganic ions in suspension cultures of red spruce (Picea rubens). Can J For Res 26:550–559

    Article  CAS  Google Scholar 

  • Minocha R, Long S (2004) Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization. J Chromatogr A 1035:63–73

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa K, Onodera A, Tominaga N (2006) Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp. Chemosphere 63:1553–1559

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    Article  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Article  PubMed  CAS  Google Scholar 

  • Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G, Pagliari M, Sanità di Toppi L (2005) Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol Biochem 43:45–54

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides: structure, biosynthesis and function. Plant Physiol 109:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Rijstenbil JW, Wijnholds JA (1996) HPLC analysis of nonprotein thiols in planktonic diatoms: pool size, redox state and response to copper and cadmium exposure. Mar Biol 127:45–54

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717

    Article  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Schröder P, Fischer C, Debus R, Wenzel A (2003) Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and soil eluates. Environ Sci Pollut Res 10:225–234

    Google Scholar 

  • Sneller FEC, van Heerwaarden LM, Koevoets PLM, Vooijs R, Schat H, Verkleij JAC (2000) Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman’s reagent and monobromobimane. J Agric Food Chem 48:4014–4019

    Article  PubMed  CAS  Google Scholar 

  • Souza JF, Rauser WE (2003) Maize and radish sequester excess cadmium and zinc in different ways. Plant Sci 165:1009–1022

    Article  CAS  Google Scholar 

  • Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.). Environ Toxicol 20:195–201

    Article  PubMed  CAS  Google Scholar 

  • Teasdale RD, Dawson PA, Woolhouse HW (1986) Mineral nutrient requirements of a loblolly pine (Pinus taeda) cell suspension culture. Evaluation of a medium formulated from seed composition data. Plant Physiol 82:942–945

    PubMed  CAS  Google Scholar 

  • Tukendorf A, Rauser WE (1990) Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci 70:155–166

    Article  CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80

    Article  CAS  Google Scholar 

  • Wójcik M, Vangronsveld J, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ Exp Bot 53:151–161

    Google Scholar 

  • Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155

    Article  CAS  Google Scholar 

  • Wu F-B, Chen F, Wei K, Zhang G-P (2004) Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57:447–454

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Beth A. Ahner and Dr. James E. Gawel for their valuable suggestions. The authors are thankful to Prof. Curtis Givan, Dr. Kevin T. Smith, Prof. Leland Jahnke, and Prof. Subhash C. Minocha for critical reviews of this manuscript. Thanks are also extended to Benjamin Mayer and Kenneth R. Dudzik for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thangavel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangavel, P., Long, S. & Minocha, R. Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88, 201–216 (2007). https://doi.org/10.1007/s11240-006-9192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9192-1

Keywords

Navigation