Skip to main content

Advertisement

Log in

Computational imaging analysis of fibrin matrices with the inclusion of erythrocytes from homozygous SS blood reveals agglomerated and amorphous structures

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Sickle cell disease is a single point mutation disease that is known to alter the coagulation system, leading to hypercoagulable plasma conditions. These hypercoagulable conditions can lead to complications in the vasculature, caused by fibrin clots that form undesirably. There is a need to understand the morphology and structure of fibrin clots from patients with sickle cell disease, as this could lead to further discovery of treatments and life-saving therapies. In this work, a computational imaging analysis method is presented to evaluate fibrin agglomeration in the presence of erythrocytes (RBCs) homozygous for the sickle cell mutation (SS). Numerical algorithms were used to determine agglomeration of fibrin fibers within a matrix with SS RBCs to test the hypothesis that fibrin matrices with the inclusion of SS RBCs possess a more agglomerated structure than native fibrin matrices with AA RBCs. The numerical results showed that fibrin structures with SS RBCs displayed an overall higher degree of agglomeration as compared to native fibrin structures. The computational algorithm was also used to evaluate fibrin fiber overlap (aggregation) and anisotropy (orientation) in normal fibrin matrices compared to fibrin matrices polymerized around SS RBCs; however, there was no statistical difference. Ultrasound measurements of stiffness revealed rigid RBCs in the case of samples derived from homozygous SS blood, and densely evolving matrices, when compared to normal fibrin with the inclusion of AA RBCs. An agglomeration model is suggested to quantify the fibrin aggregation/clustering near RBCs for both normal fibrin matrices and for the altered structures. The results of this work are important in the sense that the understanding of aggregation and morphology in fibrin clots with incorporation of RBCs from persons living with sickle cell anemia may elucidate the complexities of comorbidities and other disease complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Doolittle RF (1984) Fibrinogen and fibrin. Annu Rev Biochem 53(1):195–229

    Article  CAS  PubMed  Google Scholar 

  2. Brown AEX et al (2009) Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941):741–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10(4):1502–1514

    Article  CAS  PubMed  Google Scholar 

  4. Baradet TC, Haselgrove JC, Weisel JW (1995) Three-dimensional reconstruction of fibrin clot networks from stereoscopic intermediate voltage electron microscope images and analysis of branching. Biophys J 68(4):1551–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bidault L et al (2015) Fibrin-based interpenetrating polymer network biomaterials with tunable biodegradability. Polymer 62(0):19–27

    Article  CAS  Google Scholar 

  6. Blombäck B et al (1989) Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochimica et Biophysica Acta (BBA) 997(1–2):96–110

    Article  Google Scholar 

  7. Curtis DJ et al (2013) A study of microstructural templating in fibrin-thrombin gel networks by spectral and viscoelastic analysis. Soft Matter 9(19):4883–4889

    Article  CAS  Google Scholar 

  8. Hantgan RR, Hermans J (1979) Assembly of fibrin. A light scattering study. J Biol Chem 254(22):11272–11281

    CAS  PubMed  Google Scholar 

  9. Hartmann A, Boukamp P, Friedl P (2006) Confocal reflection imaging of 3D fibrin polymers. Blood Cells Mol Dis 36(2):191–193

    Article  CAS  PubMed  Google Scholar 

  10. Kim E et al (2011) Correlation between fibrin network structure and mechanical properties: an experimental and computational analysis. Soft Matter 7(10):4983–4992

    Article  CAS  Google Scholar 

  11. Lai VK et al (2012) Microstructural and mechanical differences between digested collagen–fibrin co-gels and pure collagen and fibrin gels. Acta Biomater 8(11):4031–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lesman A et al (2011) Engineering vessel-like networks within multicellular fibrin-based constructs. Biomaterials 32(31):7856–7869

    Article  CAS  PubMed  Google Scholar 

  13. Magatti D et al (2013) Modeling of fibrin gels based on confocal microscopy and light-scattering data. Biophys J 104(5):1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mickel W et al (2008) Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy. Biophys J 95(12):6072–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molteni M et al (2013) Fast two-dimensional bubble analysis of biopolymer filamentous networks pore size from confocal microscopy thin data stacks. Biophys J 104(5):1160–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rowe SL, Lee S, Stegemann JP (2007) Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater 3(1):59–67

    Article  CAS  PubMed  Google Scholar 

  17. Soon ASC et al (2010) Engineering fibrin matrices: the engagement of polymerization pockets through fibrin knob technology for the delivery and retention of therapeutic proteins. Biomaterials 31(7):1944–1954

    Article  CAS  PubMed  Google Scholar 

  18. Weisel JW (2004) The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 112(2–3):267–276

    Article  CAS  PubMed  Google Scholar 

  19. Weisel JW (2005) Fibrinogen and fibrin. In: David ADP, John MS (eds) Advances in protein chemistry. Academic Press, Cambridge pp 247–299

    Google Scholar 

  20. Whittaker P, Przyklenk K (2009) Fibrin architecture in clots: a quantitative polarized light microscopy analysis. Blood Cells Mol Dis 42(1):51–56

    Article  CAS  PubMed  Google Scholar 

  21. Ye Q et al (2000) Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 17(5):587–591

    Article  CAS  PubMed  Google Scholar 

  22. Chow E et al (2014) Effect of hypoglycaemia on thrombosis and inflammation in patients with type 2 diabetes. Lancet 383:S35

    Article  Google Scholar 

  23. Dhall DP, Nair CH (1994) Effects of gliclazide on fibrin network. J Diabetes Complicat 8(4):231–234

    Article  CAS  PubMed  Google Scholar 

  24. Jörneskog G, Fatah K, Blombäck M (1998) Fibrin gel structure in diabetic patients before and during treatment with acetylsalicylic acid: a pilot study. Fibrinolysis Proteolysis 12(6):360–365

    Article  Google Scholar 

  25. Mirshahi M et al (1987) Glycosylation of human fibrinogen and fibrin in vitro its consequences on the properties of fibrin(ogen). Thromb Res 48(3):279–289

    Article  CAS  PubMed  Google Scholar 

  26. Murakami T et al (1990) Increased accumulation of nonenzymatically glycated fibrinogen in the renal cortex in rats. Thromb Res 58(1):23–33

    Article  CAS  PubMed  Google Scholar 

  27. Nair CH et al (1991) Studies on fibrin network structure in human plasma. Part II—clinical application: diabetes and antidiabetic drugs. Thromb Res 64(4):477–485

    Article  CAS  PubMed  Google Scholar 

  28. Svensson J et al (2012) Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: a mass spectrometric and isotope labeling study. Biochem Biophys Res Commun 421(2):335–342

    Article  CAS  PubMed  Google Scholar 

  29. Tehrani S et al (2013) OC-04 Gender aspects of fibrin clot structure in patients with type 1 diabetes mellitus. Thromb Res 131:S72

    Article  Google Scholar 

  30. Viswanathan GN et al (2014) Differences in thrombus structure and kinetics in patients with type 2 diabetes mellitus after non ST elevation acute coronary syndrome. Thromb Res 133(5):880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walus-Miarka M et al (2012) Altered fibrin-clot properties are associated with retinopathy in type 2 diabetes mellitus. Diabetes Metab 38(5):462–465

    Article  CAS  PubMed  Google Scholar 

  32. Kwasny-Krochin B, Gluszko P, Undas A (2010) Unfavorably altered fibrin clot properties in patients with active rheumatoid arthritis. Thromb Res 126(1):e11–e16

    Article  CAS  PubMed  Google Scholar 

  33. Ballard HS (1978) Hemostatic alterations in sickle cell anemia. In: Caughey WS (ed) Biochemical and clinical aspects of hemoglobin abnormalities. Academic Press, Cambridge pp 67–76

    Chapter  Google Scholar 

  34. Mann JR et al (1972) Ancrod in sickle-cell crisis. Lancet 299(7757):934–937

    Article  Google Scholar 

  35. Stuart MJ, Setty BNY(2001) Hemostatic alterations in sickle cell disease: relationships to disease pathophysiology. Pediatr Pathol Mol Med 20(1):27–46

    Article  CAS  PubMed  Google Scholar 

  36. Keegan PM, Surapaneni S, Platt MO (2012) Sickle cell disease activates peripheral blood mononuclear cells to induce cathepsins K and V activity in endothelial cells. Anemia 2012:7

    Article  Google Scholar 

  37. Platt MO, Shockey WA (2016) Endothelial cells and cathepsins: biochemical and biomechanical regulation. Biochimie 122:314–323

    Article  CAS  PubMed  Google Scholar 

  38. Ataga KI, Orringer EP (2003) Hypercoagulability in sickle cell disease: a curious paradox. Am J Med 115(9):721–728

    Article  CAS  PubMed  Google Scholar 

  39. Noubouossie DCF et al (2012) Evaluation of the procoagulant activity of endogenous phospholipids in the platelet-free plasma of children with sickle cell disease using functional assays. Thromb Res 130(2):259–264

    Article  CAS  PubMed  Google Scholar 

  40. Pakbaz Z, Wun T (2014) Role of the hemostatic system on sickle cell disease pathophysiology and potential therapeutics. Hematol Oncol Clin North Am 28(2):355–374

    Article  PubMed  PubMed Central  Google Scholar 

  41. Colella MP et al (2015) Elevated hypercoagulability markers in hemoglobin SC disease. Haematologica 100(4):466–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noubouossie D, Key NS, Ataga KI (2016) Coagulation abnormalities of sickle cell disease: relationship with clinical outcomes and the effect of disease modifying therapies. Blood Rev 30(4):245–256

    Article  CAS  PubMed  Google Scholar 

  43. Ovbiagele B, Adams RJ (2012) Trends in comorbid sickle cell disease among stroke patients. J Neurol Sci 313(1–2):86–91

    Article  PubMed  Google Scholar 

  44. Gemmete JJ et al (2013) Arterial ischemic stroke in children. Neuroimaging Clin N Am 23(4):781–798

    Article  PubMed  Google Scholar 

  45. Menaa F (2013) Stroke in sickle cell anemia patients: a need for multidisciplinary approaches. Atherosclerosis 229(2):496–503

    Article  CAS  PubMed  Google Scholar 

  46. Marano M et al (2014) Recurrent large volume silent strokes in sickle cell disease. J Stroke Cerebrovasc Dis 23(10):e453–e455

    Article  PubMed  Google Scholar 

  47. Fan NK, Keegan PM, Platt MO, Averett RD (2015) Experimental and imaging techniques for examining fibrin clot structures in normal and diseased states. J Vis Exp 98:e52019

    Google Scholar 

  48. Shung KK (1982) Acoustic measurement of erythrocyte compressibility. J Acoust Soc Am 72(5):1364

    Article  CAS  PubMed  Google Scholar 

  49. Dahl JJ (2015) Diagnostic ultrasound: imaging and blood flow measurements (second edition). Ultrasound Med Biol. 41(12):3259–3260

    Article  Google Scholar 

  50. Dong C, Chadwick RS, Schechter AN (1992) Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation. Biophys J 63(3):774–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maciaszek JL, Lykotrafitis G (2011) Sickle cell trait human erythrocytes are significantly stiffer than normal. J Biomech 44(4):657–661

    Article  PubMed  Google Scholar 

  52. Vu-Bac N et al (2015) Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Comp Part B Eng 68:446–464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number 1K01HL115486 and by New Innovator Grant 1DP2OD007433 from the Office of the Director, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney D. Averett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averett, R.D., Norton, D.G., Fan, N.K. et al. Computational imaging analysis of fibrin matrices with the inclusion of erythrocytes from homozygous SS blood reveals agglomerated and amorphous structures. J Thromb Thrombolysis 43, 43–51 (2017). https://doi.org/10.1007/s11239-016-1426-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-016-1426-4

Keywords

Navigation