Skip to main content

Advertisement

Log in

Analysis of CYP2C9 polymorphisms (*2 and *3) in warfarin therapy patients in Pakistan. Association of CYP2C9 polymorphisms (*2 and*3) with warfarin dose, age, PT and INR

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Warfarin is a widely used anticoagulant characterized by having a narrow therapeutic index and exhibiting a wide range of inter-individual and inter-ethnic variation. Single nucleotide polymorphisms in hepatic VKORC1 and CYP2C9 genes causes decreased and increased metabolism of warfarin respectively. The objective of this study was to evaluate the allele frequency of CYP2C9 polymorphic variants *2 and *3 and the association of these allelic variants with PT/INR and daily/weekly dose of warfarin. Seventy-four patients with heart valve replacement were selected. Patients taking low warfarin dose (4.90–17.50 mg weekly) for at least last 3 months and had a stable INR in the range of 2–3 were included in this study. CYP2C9 polymorphism was analyzed by polymerase chain reaction followed by restriction fragment length polymorphism (PCR–RFLP) technique. Among 74 patients, 9 (12.1 %) showed to have *2 allele, whereas 11 (14.1 %) had *3 allele. Genotype frequencies of wild and variant alleles were, 54.1, 17.6, 21.6 and 6.8 % for *1/*1, *1/*2, *1/*3 and *2/*3 respectively. None of the patient was homozygous for *2 and *3. Statistical analysis showed that low warfarin dose (weekly) is significantly associated with *1/*2 and *1/*3 genotypes (p value ≥ 0.001), whereas PT/INR showed no significant association with the any genotypes of CYP2C9. Our study suggest that polymorphic variants of CYP2C9 (*2 and *3) might influence warfarin dose requirements and associated with the low dose of warfarin in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Daniels CJ, Barbetseas J, Boudoulas H (2009) Prosthetic valves. In: American College of Cardiology (ed) Adult clinical cardiology self-assessment program, version 7, vol 4. American College of Cardiology, Washington, DC, pp 9.1–9.25

    Google Scholar 

  2. Vahanian A, Baumgartner H, Bax J et al (2007) Guidelines on the management of valvular heart disease: the task force on the management of valvular heart disease of the European Society of Cardiology. Eur Heart J 28:230–268

    PubMed  Google Scholar 

  3. Laplace G, Lafitte S, Labeque JN et al (2004) Clinical significance of early thrombosis after prosthetic mitral valve replacement. J Am Coll Cardiol 43:1283–1290

    Article  PubMed  Google Scholar 

  4. Pirmohamed M (2006) Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol 62:509–511

    Article  PubMed Central  PubMed  Google Scholar 

  5. Antonella T, Anne G (2004) Warfarin from rat poison to oral anticoagulant. Chronic ill 8:16–19

  6. Nutescu EA, Shapiro NL, Chevalier A et al (2005) A pharmacologic overview of current and emerging anticoagulants. Clevel Clin J Med 72:S2–S6

    Article  Google Scholar 

  7. Hirsh J, Fuster V, Ansell J, Halperin LJ (2003) American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation 107:1692–1711

    Article  PubMed  Google Scholar 

  8. Rieder MJ et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293

    Article  CAS  PubMed  Google Scholar 

  9. Conce EA et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333

    Article  Google Scholar 

  10. Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics 12:251–263

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi H, Echizen H (2001) Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 40:587–603

    Article  CAS  PubMed  Google Scholar 

  12. Urquhart BL, Tirona RG, Kim RB (2007) Nuclear receptors and the regulation of drug metabolizing enzymes and drug transporters implications for inter-individual variability in response to drugs. J Clin Pharmacol 47:566–578

    Article  CAS  PubMed  Google Scholar 

  13. Sim SC, Ingelman-Sundberg M (2006) The human cytochrome P450 allele nomenclature committee web site: submission criteria, procedures, and objectives. In: Phillips IR, Shephard EA (eds) Cytochrome P450 protocols. Methods in molecular biology, vol 320. Humana Press, pp 183–191

    Chapter  Google Scholar 

  14. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR (1994) Impaired S-warfarin metabolism catalyzed by R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42

    Article  CAS  PubMed  Google Scholar 

  15. Xie HG, Prasad S, Kim HC, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54(10):1257–1270

    Article  CAS  PubMed  Google Scholar 

  16. Kirchheiner J, Störmer E, Meisel C, Steinbach N, Roots I, Brockmöller J (2003) Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics 13(8):473–480

    Article  CAS  PubMed  Google Scholar 

  17. Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yale SH, Vidaillet HJ, Burmester JK (2007) Evaluation of genetic factors for warfarin dose prediction. Clin Med Res 5:8–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Millican EA, Lenzini PA, Milligan PE, Grosso L, Eby C, Deych E et al (2007) Genetic based dosing in orthopedic patients beginning warfarin therapy. Blood 110:1511–1515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. García-Martín E, Martínez C, Ladero JM, Gamito FJ, Agúndez JA (2001) High frequency of mutations related to impaired CYP2C9 metabolism in a Caucasian population. Eur J Clin Pharmacol 57:47–49

    Article  PubMed  Google Scholar 

  20. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM et al (2003) Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 59:303–312

    Article  CAS  PubMed  Google Scholar 

  21. Yasar U, Aklillu E, Canaparo R et al (2002) Analysis of CYP2C9*5 in Caucasian, oriental and Black-African populations. Eur J Clin Pharmacol 58:555–558

    Article  CAS  PubMed  Google Scholar 

  22. Aynacioglu AS, Brockmöller J, Bauer S et al (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48:409–415

    Article  CAS  PubMed  Google Scholar 

  23. Imai J, Ieiri I, Mamiya K et al (2000) Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetics analysis of the CYP2C9 locus. Pharmacogenetics 10:85–89

    Article  CAS  PubMed  Google Scholar 

  24. Yoon YR, Shon JH, Kim MK et al (2001) Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol 51:277–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Adithan C, Gerard N, Vasu S et al (2003) Allele and genotype frequency of CYP2C9 in Tamilnadu population. Eur J Clin Pharmacol 59:707–709

    Article  CAS  PubMed  Google Scholar 

  26. Zand N, Tajik N, Moghaddam AS, Milanian I (2007) Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population. Clin Exp Pharm Physiol 34:102–105

    Article  CAS  Google Scholar 

  27. Sambrook J, Rusell D (2001) Molecular cloning: a laboratory manual, vol 3, 3rd edn

  28. Lindh JD, Holm ML, Rane A (2009) Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis. Eur J Clin Pharmacol 65(4):365–375

    Article  CAS  PubMed  Google Scholar 

  29. Oner OG, Langaee TY, Feng H, Buyru N, Ulutin T, Hatemi AC et al (2008) VKORC1 and CYP2C9 polymorphisms are associated with warfarin dose requirements in Turkish patients. EurJ Clin Pharmacol 64(9):889–894

    Article  Google Scholar 

  30. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333

    Article  CAS  PubMed  Google Scholar 

  31. Kimmel S, French B, Kasner S et al (2013) A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 369(24):2283–2293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bazan NS, Mokhtar S, Sabry NA, Badary OA, Rizk A (2014) Factors affecting warfarin dose requirements and quality of anticoagulation in adult Egyptian patients: role of gene polymorphism. Iran J Med Sci 183:161–172

    Article  CAS  Google Scholar 

  33. Jose R et al (2005) CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol 19(1):101–105

    Article  CAS  PubMed  Google Scholar 

  34. Wang SL, Huang JD, Lai MD, Tsai JJ (1995) Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 5(1):37–42

    Article  CAS  PubMed  Google Scholar 

  35. Santos PC et al (2013) CYP2C9 and VKORC1 polymorphisms influence warfarin dose variability in patients on long-term anticoagulation. Eur J Clin Pharmacol 69(4):789–797

    Article  PubMed  Google Scholar 

  36. Chern HD et al (2006) CYP2C9 polymorphism and warfarin sensitivity in Taiwan Chinese. Clin Chim Acta 367(1–2):108–113

    Article  CAS  PubMed  Google Scholar 

  37. You JH, Tsui KK, Wong RS, Cheng G (2012) Cost-effectiveness of dabigatran versus genotype-guided management of warfarin therapy for stroke prevention in patients with atrial fibrillation. PLos One 7(6):e39640

  38. Taube J, Halsall D, Baglin T (2000) Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 96(5):1816–1819

    CAS  PubMed  Google Scholar 

  39. Crespi CL, Miller VP (1997) The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH: cytochrome P450 oxidoreductase. Pharmacogenetics 7:203–210

    Article  CAS  PubMed  Google Scholar 

  40. Aithal GP, Day CP, Kesteven P, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Author is thankful to all department fellows for giving kind support and help. We are also thankful to Dr. Shah Jahan, Dr. Saba and Shabbir Hussain for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiza Yasmeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasmeen, F., Ghafoor, M.B., Khalid, A.W. et al. Analysis of CYP2C9 polymorphisms (*2 and *3) in warfarin therapy patients in Pakistan. Association of CYP2C9 polymorphisms (*2 and*3) with warfarin dose, age, PT and INR. J Thromb Thrombolysis 40, 218–224 (2015). https://doi.org/10.1007/s11239-015-1215-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-015-1215-5

Keywords

Navigation