Skip to main content

Advertisement

Log in

Influence of HbA1c levels on platelet function profiles associated with tight glycemic control in patients presenting with hyperglycemia and an acute coronary syndrome

A subanalysis of the CHIPS Study (“C ontrol de HI perglucemia y Actividad P laquetaria en Pacientes con S índrome Coronario Agudo”)

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Patients with hyperglycemia, an acute coronary syndrome and poor glycemic control have increased platelet reactivity and poor prognosis. However, it is unclear the influence of a tight glycemic control on platelet reactivity in these patients. This is a subanalysis of the CHIPS study. This trial randomized patients with hyperglycemia to undergo an intensive glucose control (target blood glucose 80–120 mg/dL), or conventional glucose control (target blood glucose <180 mg/dL). We analyzed platelet function at discharge on the subgroup of patients with poor glycemic control, defined with admission levels of HbA1c higher than 6.5 %. The primary endpoint was maximal platelet aggregation following stimuli with 20 μM ADP. We also measured aggregation following collagen, epinephrine, and thrombin receptor-activated peptide, as well as P2Y12 reactivity index and surface expression of glycoprotein IIb/IIIa and P-selectin. A total of 67 patients presented HbA1c ≥ 6.5 % (37 intensive, 30 conventional), while 42 had HbA1c < 6.5 % (20 intensive, 22 conventional). There were no differences in baseline characteristics between groups. At discharge, patients with HbA1c ≥6.5 % had significantly reduced MPA with intensive glucose control compared with conventional control (46.1 ± 22.3 vs. 60.4 ± 20.0 %; p = 0.004). Similar findings were shown with other measures of platelet function. However, glucose control strategy did not affect platelet function parameters in patients with HbA1c < 6.5 %. Intensive glucose control in patients presenting with an acute coronary syndrome and hyperglycemia results in a reduction of platelet reactivity only in the presence of elevated HbA1c levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACS:

Acute coronary syndrome

ADP:

Adenosine diphosphate

DM:

Diabetes mellitus

HbA1c:

Glycated haemoglobin

LTA:

Light transmission aggregometry

TRAP:

Thrombin receptor-activated peptide

References

  1. Norhammar A, Malmberg K, Diderholm E et al (2004) Diabetes mellitus: the major risk factor in unstable coronary artery disease even after consideration of the extent of coronary artery disease and benefits of revascularization. J Am Coll Cardiol 43:585–591

    Article  PubMed  Google Scholar 

  2. Capes SE, Hunt D, Malmberg K et al (2000) Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 355:773–778

    Article  PubMed  CAS  Google Scholar 

  3. Vivas D, García-Rubira JC, González-Ferrer JJ et al (2008) Prognostic value of first fasting glucose measurement compared with admission glucose level in patients with acute coronary syndrome. Rev Esp Cardiol 61:458–464

    Article  PubMed  Google Scholar 

  4. Timmer JR, Hoekstra M, Nijsten MW et al (2011) Prognostic value of admission glycosylated hemoglobin and glucose in nondiabetic patients with ST-segment-elevation myocardial infarction treated with percutaneous coronary intervention. Circulation 124:704–711

    Article  PubMed  CAS  Google Scholar 

  5. American Diabetes Association (2010) Standards of medical care in diabetes—2010. Diabetes Care 33(Suppl 1):S11–S61

    Google Scholar 

  6. Selvin E, Steffes MW, Zhu H et al (2010) Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 362:800–811

    Article  PubMed  CAS  Google Scholar 

  7. Hadjadj S, Coisne D, Mauco G et al (2004) Prognostic value of admission plasma glucose and HbA in acute myocardial infarction. Diabet Med 21:305–310

    Article  PubMed  CAS  Google Scholar 

  8. Angiolillo DJ, Bernardo E, Ramirez C et al (2006) Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. J Am Coll Cardiol 48:298–304

    Article  PubMed  CAS  Google Scholar 

  9. Neubauer H, Setiadi P, Günesdogan B et al (2010) Influence of glycaemic control on platelet bound CD40-CD40L system, P-selectin and soluble CD40 ligand in Type 2 diabetes. Diabet Med 27:384–390

    Article  PubMed  CAS  Google Scholar 

  10. Angiolillo DJ, Bernardo E, Sabate M et al (2007) Impact of platelet reactivity on cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 50:1541–1547

    Article  PubMed  Google Scholar 

  11. Malmberg K, Ryden L, Efendic S et al (1995) Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol 26:57–65

    Article  PubMed  CAS  Google Scholar 

  12. Malmberg K, Ryden L, Wedel H et al (2005) Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 26:650–661

    Article  PubMed  CAS  Google Scholar 

  13. Wiener RS, Wiener DC, Larson RJ (2008) Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA 300:933–944

    Article  PubMed  CAS  Google Scholar 

  14. Finfer S, Chittock DR, Su SY et al (2009) The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297

    Article  PubMed  Google Scholar 

  15. Vivas D, García-Rubira JC, Bernardo E et al (2011) Effects of intensive glucose control on platelet reactivity in patients with acute coronary syndrome. Results of the CHIPS study. Heart 97:803–809

    Article  PubMed  CAS  Google Scholar 

  16. Bassand JP, Hamm CW, Ardissino D et al (2007) Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes. Task force for diagnosis and treatment of non-ST-segment elevation acute coronary syndromes of European Society of Cardiology. Eur Heart J 28:1598–1660

    Article  PubMed  CAS  Google Scholar 

  17. Van de Werf F, Bax J, Betriu A et al (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology. Eur Heart J 29:2909–2945

    Article  PubMed  Google Scholar 

  18. Rocca B, Santilli F, Pitocco D et al (2012) The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes. J Thromb Haemost 10:1220–1230

    Article  PubMed  CAS  Google Scholar 

  19. Angiolillo DJ, Capranzano P, Ferreiro JL et al (2011) Impact of adjunctive cilostazol therapy on platelet function profiles in patients with and without diabetes mellitus on aspirin and clopidogrel therapy. Thromb Haemost 106:253–262

    Article  PubMed  CAS  Google Scholar 

  20. Gurbel PA, Bliden KP, Samara W et al (2005) Clopidogrel effect on platelet reactivity in patients with stent thrombosis: results of the CREST Study. J Am Coll Cardiol 46:1827–1832

    Article  PubMed  CAS  Google Scholar 

  21. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E et al (2006) Influence of aspirin resistance on platelet function profiles in patients on long-term aspirin and clopidogrel after percutaneous coronary intervention. Am J Cardiol 97:38–43

    Article  PubMed  CAS  Google Scholar 

  22. Levey AS, Coresh J, Balk E et al (2003) National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 139:137–147

    PubMed  Google Scholar 

  23. TIMI Study Group. Definitions used in TIMI-trials. http://www.timi.org. Accessed 15 Oct 2011

  24. James S, Angiolillo DJ, Cornel JH et al (2010) Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J 31:3006–3016

    Article  PubMed  CAS  Google Scholar 

  25. Cakmak M, Cakmak N, Cetemen S et al (2008) The value of admission glycosylated haemoglobin level in patients with acute myocardial infarction. Can J Cardiol 24:375–378

    Article  PubMed  CAS  Google Scholar 

  26. Cohen HW, Crandall JP, Hailpern SM et al (2008) Aspirin resistance associated with HbA1c and obesity in diabetic patients. J Diabetes Complications 22:224–228

    Article  PubMed  Google Scholar 

  27. Watala C, Golanski J, Pluta J et al (2004) Reduced sensitiviy of platelets from type 2 diabetic patients to acetylsalicylic acid (aspirin)-its relation to metabolic control. Thromb Res 113:101–113

    Article  PubMed  CAS  Google Scholar 

  28. De Mulder M, Oemrawsingh RM, Stam F et al (2012) Comparison of diagnostic criteria to detect undiagnosed diabetes in hyperglycaemic patients with acute coronary syndrome. Heart 98:37–41

    Article  PubMed  Google Scholar 

  29. Vivas D, Angiolillo DJ (2010) Platelet P2Y12 receptor inhibition: an update on clinical drug development. Am J Cardiovasc Drugs 10:217–226

    Article  PubMed  CAS  Google Scholar 

  30. Wiviott SD, Braunwald E, Angiolillo DJ et al (2008) Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38. Circulation 118:1626–1636

    Article  PubMed  CAS  Google Scholar 

  31. Angiolillo DJ, Bernardo E, Zanoni M et al (2011) Impact of insulin receptor substrate-1 genotypes on platelet reactivity and cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 58:30–39

    Article  PubMed  CAS  Google Scholar 

  32. Geisler T, Zürn C, Simonenko R et al (2010) Early but not late stent trombosis is influenced by residual platelet aggregation in patients undergoing coronary interventions. Eur Heart J 31:59–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a non-restricted grant from the Fundación Investigación y Desarrollo Area Cardiovascular FIC (Madrid, Spain CIF G-81563801).

Conflict of interest

There are no relationship to disclosure between authors and the industry related to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Vivas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Supplementary material 2 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivas, D., García-Rubira, J.C., Bernardo, E. et al. Influence of HbA1c levels on platelet function profiles associated with tight glycemic control in patients presenting with hyperglycemia and an acute coronary syndrome. J Thromb Thrombolysis 35, 165–174 (2013). https://doi.org/10.1007/s11239-012-0834-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0834-3

Keywords

Navigation