Skip to main content
Log in

Update on heparin: what do we need to know?

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Over the last 15 years, there has been a shift from unfractionated heparin to low-molecular-weight heparin or fondaparinux for many indications. Nonetheless, heparin continues to be used and it remains the drug of choice for selected indications and patients. This paper reviews when and how to use heparin and when low-molecular-weight heparin or fondaparinux may be a better choice. The paper also describes some of the new parenteral anticoagulants under development and provides perspective on how the introduction of rapid-acting oral thrombin or factor Xa inhibitors is likely to reduce or eliminate the need for bridging with parenteral anticoagulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hirsh J, Bauer KA, Donati MB, Gould M, Samama MM, Weitz JI, American College of Chest Physicians (2008) Parenteral anticoagulants: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 133:141S–159S

    Article  CAS  PubMed  Google Scholar 

  2. Weitz JI (1997) Low-molecular-weight heparins. N Engl J Med 337:688–698

    Article  CAS  PubMed  Google Scholar 

  3. Young E, Prins M, Levine MN, Hirsh J (1992) Heparin binding to plasma proteins, an important mechanism for heparin resistance. Thromb Haemost 67:639–643

    CAS  PubMed  Google Scholar 

  4. Young E, Cosmi B, Weitz J, Hirsh J (1993) Comparison of the non-specific binding of unfractionated heparin and low molecular weight heparin (Enoxaparin) to plasma proteins. Thromb Haemost 70:625–630

    CAS  PubMed  Google Scholar 

  5. Young E, Wells P, Holloway S, Weitz J, Hirsh J (1994) Ex-vivo and in vitro evidence that low molecular weight heparins exhibit less binding to plasma proteins than unfractionated heparin. Thromb Haemost 71:300–304

    CAS  PubMed  Google Scholar 

  6. Othieno R, Abu Affan M, Okpo E (2007) Home versus in-patient treatment for deep vein thrombosis. Cochrane Database Syst Rev 18:CD003076

    Google Scholar 

  7. Siragusa S, Cosmi B, Piovella F, Hirsh J, Ginsberg JS (1996) Low-molecular-weight heparins and unfractionated heparin in the treatment of patients with acute venous thromboembolism: results of a meta-analysis. Am J Med 100:269–277

    Article  CAS  PubMed  Google Scholar 

  8. Rocha E, Martinez-Gonzalez MA, Montes R, Panizo C (2000) Do the low molecular weight heparins improve efficacy and safety of the treatment of deep venous thrombosis? A meta-analysis. Haematologica 85:935–942

    CAS  PubMed  Google Scholar 

  9. Dolovich LR, Ginsberg JS, Douketis JD, Holbrook AM, Cheah G (2000) A meta-analysis comparing low-molecular-weight heparins with unfractionated heparin in the treatment of venous thromboembolism: examining some unanswered questions regarding location of treatment, product type, and dosing frequency. Arch Intern Med 160:181–188

    Article  CAS  PubMed  Google Scholar 

  10. Louzada ML, Majeed H, Wells PS (2009) Efficacy of low-molecular-weight heparin versus vitamin K antagonists for long term treatment of cancer-associated venous thromboembolism in adults: a systematic review of randomized controlled trials. Thromb Res 123:837–844

    Article  CAS  PubMed  Google Scholar 

  11. van Doormaal FF, Raskob GE, Davidson BL, Decousus H, Gallus A, Lensing AW, Piovella F, Prins MH, Buller HR (2009) Treatment of venous thromboembolism in patients with cancer: Subgroup analysis of the Matisse clinical trials. Thromb Haemost 101:762–769

    PubMed  Google Scholar 

  12. Chong BH, Isaacs A (2009) Heparin-induced thrombocytopenia: what clinicians need to know. Thromb Haemost 101:279–283

    CAS  PubMed  Google Scholar 

  13. Handschin AE, Trentz OA, Hoerstrup SP, Kock HJ, Wanner GA, Trentz O (2005) Effect of low molecular weight heparin (dalteparin) and fondaparinux (Arixtra) on human osteoblasts in vitro. Br J Surg 92:177–183

    Article  CAS  PubMed  Google Scholar 

  14. Bhandari M, Hirsh J, Weitz JI, Young E, Venner TJ, Shaughnessy SG (1998) The effects of standard and low molecular weight heparin on bone nodule formation in vitro. Thromb Haemost 80:413–417

    CAS  PubMed  Google Scholar 

  15. Rajgopal R, Butcher M, Weitz JI, Shaughnessy SG (2006) Heparin synergistically enhances interleukin-11 signalling through up-regulation of the MAPK pathway. J Biol Chem 281:20780–20787

    Article  CAS  PubMed  Google Scholar 

  16. Muir JM, Hirsh J, Weitz JI, Andrew M, Young E, Shaughnessy SG (1997) A histomorphometric comparison of the effects of heparin and low-molecular-weight heparin on cancellous bone in rats. Blood 89:3236–3242

    CAS  PubMed  Google Scholar 

  17. Hawkins D, Evans J (2005) Minimizing the risk of heparin-induced osteoporosis during pregnancy. Expert Opin Drug Saf 4:583–590

    Article  CAS  PubMed  Google Scholar 

  18. Warkentin TE, Cook RJ, Marder VJ, Sheppard JA, Moore JC, Eriksson BI, Greinacher A, Kelton JG (2005) Anti-platelet factor 4/heparin antibodies in orthopaedic surgery patients receiving antithrombotic prophylaxis with fondaparinux or enoxaparin. Blood 106:3791–3796

    Article  CAS  PubMed  Google Scholar 

  19. Rauova L, Poncz M, McKenzie SE, Reilly MP, Arepally G, Weisel JW, Nagaswami C, Cines DB, Sachais BS (2005) Ultralarge complexes of PF4 and heparin are central to the pathogenesis of heparin-induced thrombocytopenia. Blood 105:131–138

    Article  CAS  PubMed  Google Scholar 

  20. Greinacher A, Gopinadhan M, Gunther JU, Omer-Adam MA, Strobel U, Warkentin TE, Papastavrou G, Weitschies W, Helm CA (2006) Close approximation of two platelet factor 4 tetramers by charge neutralization forms the antigens recognized by HIT antibodies. Arterioscler Thromb Vasc Biol 26:2386–2393

    Article  CAS  PubMed  Google Scholar 

  21. Lobo B, Finch C, Howard A, Minhas S (2008) Fondaparinux for the treatment of patients with acute heparin-induced thrombocytopenia. Thromb Haemost 99:208–214

    CAS  PubMed  Google Scholar 

  22. Blackmer AB, Oertel MD, Valgus JM (2009) Fondaparinux and the management of heparin-induced thrombocytopenia: the journey continues (October). Ann Pharmacother [Epub ahead of print]

  23. Blossom DB, Kallen AJ, Patel PR, Elward A, Robinson L, Gao G, Langer R, Perkins KM, Jaeger JL, Kurkjian KM, Jones M, Schillie SF, Shehab N, Ketterer D, Venkataraman G, Kishimoto TK, Shriver Z, McMahon AW, Austen KF, Kozlowski S, Srinivasan A, Turabelidze G, Gould CV, Arduino MJ, Sasisekharan R (2008) Outbreak of adverse reactions associated with contaminated heparin. N Engl J Med 359:2674–2684

    Article  CAS  PubMed  Google Scholar 

  24. Fifth Organization to Assess Strategies in Acute Ischemic Syndromes Investigators, Yusuf S, Mehta SR, Chrolavicius S, Afzal R, Pogue J, Granger CB, Budaj A, Peters RJ, Bassand JP, Wallentin L, Joyner C, Fox KA (2006) Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med 354:1464–1476

    Article  CAS  PubMed  Google Scholar 

  25. Yusuf S, Mehta SR, Chrolavicius S, Afzal R, Pogue J, Granger CB, Budaj A, Peters RJ, Bassand JP, Wallentin L, Joyner C, Fox KA, OASIS-6 Trial Group (2006) Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: the OASIS-6 randomized trial. JAMA 295:1519–1530

    Article  CAS  PubMed  Google Scholar 

  26. Mehta SR, Granger CB, Eikelboom JW, Bassand JP, Wallentin L, Faxon DP, Peters RJ, Budaj A, Afzal R, Chrolavicius S, Fox KA, Yusuf S (2007) Efficacy and safety of fondaparinux versus enoxaparin in patients with acute coronary syndromes undergoing percutaneous coronary intervention: results from the OASIS-5 trial. J Am Coll Cardiol 50:1742–1751

    Article  CAS  PubMed  Google Scholar 

  27. Wiebe EM, Stafford AR, Fredenburgh JC, Weitz JI (2003) Mechanism of catalysis of inhibition of factor IXa by antithrombin in the presence of heparin or pentasaccharide. J Biol Chem 278:35767–35774

    Article  CAS  PubMed  Google Scholar 

  28. Yang L, Manithody C, Rezaie AR (2007) Localization of the heparin binding exosites of factor IXa. J Biol Chem 277:50756–50760

    Article  Google Scholar 

  29. Bedsted T, Swanson R, Chuang YJ, Bock PE, Bjork I, Olson ST (2003) Heparin and calcium ions dramatically enhance antithrombin reactivity with factor IXa by generating new interaction exosites. Biochemistry 42:8143–8152

    Article  CAS  PubMed  Google Scholar 

  30. Buller HR, Davidson BL, Decousus H, Gallus A, Gent M, Piovella F, Prins MH, Raskob G, van den Berg-Segers AE, Cariou R, Leeuwenkamp O, Lensing AW, Matisse Investigators (2003) Subcutaneous fondaparinux versus intravenous unfractionated heparin in the initial treatment of pulmonary embolism. N Engl J Med 349:1695–1702

    Article  CAS  PubMed  Google Scholar 

  31. Buller HR, Davidson BL, Decousus H, Gallus A, Gent M, Piovella F, Prins MH, Raskob G, Segers AE, Cariou R, Leeuwenkamp O, Lensing AW, Matisse Investigators (2004) Fondaparinux or enoxaparin for the initial treatment of symptomatic deep venous thrombosis: a randomized trial. Ann Intern Med 140:867–873

    PubMed  Google Scholar 

  32. Eriksson BI, Bauer KA, Lassen MR, Turpie AG, Steering Committee of the Pentasaccharide in Hip-Fracture Surgery Study (2001) Fondaparinux compared with enoxaparin for the prevention of venous thromboembolism after hip-fracture surgery. N Engl J Med 345:1298–1304

    Article  CAS  PubMed  Google Scholar 

  33. Eriksson BI, Lassen MR, PENTasaccharide in Hip-FRActure Surgery Plus Investigators (2003) Duration of prophylaxis against venous thromboembolism with fondaparinux after hip fracture surgery: a multicenter, randomized, placebo-controlled, double-blind study. Arch Intern Med 163:1337–1342

    Article  CAS  PubMed  Google Scholar 

  34. Lim W, Dentali F, Eikelboom JW, Crowther MA (2006) Meta-analysis: low-molecular-weight heparin and bleeding in patients with severe renal insufficiency. Ann Intern Med 144:673–684

    CAS  PubMed  Google Scholar 

  35. Kearon C, Ginsberg JS, Julian JA, Douketis J, Solymoss S, Ockelford P, Jackson S, Turpie AG, MacKinnon B, Hirsh J, Gent M, Fixed-Dose Heparin (FIDO) Investigators (2006) Comparison of fixed-dose weight-adjusted unfractionated heparin and low-molecular-weight heparin for acute treatment of venous thromboembolism. JAMA 296:935–942

    Article  CAS  PubMed  Google Scholar 

  36. Raschke RA, Reilly BM, Guidry JR, Fontana JR, Srinivas S (1993) The weight-based heparin dosing nomogram compared with a “standard care” nomogram. A randomized controlled trial. Ann Intern Med 119:874–881

    CAS  PubMed  Google Scholar 

  37. Gawoski JM, Arkin CF, Bovill T, Brandt J, Rock WA Jr, Triplett DA (1987) The effects of heparin on the activated partial thromboplastin time of the College of American Pathologists Survey specimens. Responsiveness, precision, and sample effects. Arch Pathol Lab Med 111:785–790

    CAS  PubMed  Google Scholar 

  38. Bates SM, Weitz JI, Johnston M, Hirsh J, Ginsberg JS (2001) Use of a fixed activated partial thromboplastin time ratio to establish a therapeutic range for unfractionated heparin. Arch Intern Med 161:385–391

    Article  CAS  PubMed  Google Scholar 

  39. Levine MN, Hirsh J, Gent M, Turpie AG, Cruickshank M, Weitz J, Anderson D, Johnston M (1994) A randomized trial comparing activated thromboplastin time with heparin assays in patients with acute venous thromboembolism requiring large daily doses of heparin. Arch Intern Med 154:49–56

    Article  CAS  PubMed  Google Scholar 

  40. Warkentin TE, Greinacher A, Koster A, Lincoff AM, American College of Chest Physicians (2008) Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 133:340S–380S

    Article  CAS  PubMed  Google Scholar 

  41. Savi P, Herault JP, Duchaussoy P, Millet L, Schaeffer P, Petitou M, Bono F, Herbert JM (2008) Reversible biotinylated oligosaccharides: a new approach for a better management of anticoagulant therapy. J Thromb Haemost 6:1697–1706

    Article  CAS  PubMed  Google Scholar 

  42. Buller HR, Cohen AT, Davidson B, Decousus H, Gallus AS, Gent M, Pillion G, Piovella F, Prins MH, Raskob GE (2007) Idraparinux versus standard therapy for venous thromboembolic disease. N Engl J Med 357:1094–1104

    Article  CAS  PubMed  Google Scholar 

  43. Buller HR, Cohen AT, Davidson B, Decousus H, Gallus AS, Gent M, Pillion G, Piovella F, Prins MH, Raskob GE (2007) Extended prophylaxis of venous thromboembolism with idraparinux. N Engl J Med 357:1105–1112

    Article  CAS  PubMed  Google Scholar 

  44. Bousser MG, Bouthier J, Buller HR, Cohen AT, Crijns H, Davidson BL, Halperin J, Hankey G, Levy S, Pengo V, Prandoni P, Prins MH, Tomkowski W, Thorp-Pedersen C, Wyse DG (2008) Comparison of idraparinux with vitamin K antagonists for prevention of thromboembolism in patients with atrial fibrillation: a randomized, open-label non-inferiority trial. Lancet 371:315–321

    Article  CAS  PubMed  Google Scholar 

  45. Weitz JI, Hirsh J, Samama MM, American College of Chest Physicians (2008) New antithrombotic drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 133:234S–256S

    Article  CAS  PubMed  Google Scholar 

  46. Guertin KR, Choi YM (2007) The discovery of the Factor Xa inhibitor otamixaban: from lead identification to clinical development. Curr Med Chem 14:2471–2481

    Article  CAS  PubMed  Google Scholar 

  47. Eikelboom JW, Weitz JI (2009) Otamixaban in acute coronary syndromes. Lancet 374:762–764

    Article  PubMed  Google Scholar 

  48. Sabatine MS, Antman EM, Widimsky P, Ebrahim IO, Kiss RG, Saaiman A, Polasek R, Contant CF, McCabe CH, Braunwald E (2009) Otamixaban for the treatment of patients with non-ST-elevation acute coronary syndromes (SEPIA-AC1 TIMI42): a randomized, double-blind, active-controlled, phase 2 trial. Lancet 374:787–795

    Article  CAS  PubMed  Google Scholar 

  49. Dyke CK, Steinhubl SR, Kleiman NS, Cannon RO, Aberle LG, Lin M, Myles SK, Melloni C, Harrington RA, Alexander JH, Becker RC, Rusconi CP (2006) First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation 114:2490–2497

    Article  CAS  PubMed  Google Scholar 

  50. Chan MY, Cohen MG, Dyke CK, Myles SK, Aberle LG, Lin M, Walder J, Steinhubl SR, Gilchrist IC, Kleiman NS, Vorchheimer DA, Chronos N, Melloni C, Alexander JH, Harrington RA, Tonkens RM, Becker RC, Rusconi CP (2008) Phase 1b randomized study of antidote-controlled modulation of factor IXa activity in patients with stable coronary artery disease. Circulation 117:2865–2874

    Article  CAS  PubMed  Google Scholar 

  51. Gross PL, Weitz JI (2009) New antithrombotic drugs. Clin Pharmacol Therap 86:139–146

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Dr. Weitz holds the Canada Research Chair (Tier I) in Thrombosis and the Heart and Stroke Foundation of Ontario/J. F. Mustard Chair in Cardiovascular Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey I. Weitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weitz, D.S., Weitz, J.I. Update on heparin: what do we need to know?. J Thromb Thrombolysis 29, 199–207 (2010). https://doi.org/10.1007/s11239-009-0411-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-009-0411-6

Keywords

Navigation