Skip to main content

Advertisement

Log in

Losartan and Simvastatin Inhibit Platelet Activation in Hypertensive Patients

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Background: Diabetic patients also show hypercoagulability and platelet hyperaggregability, with increased levels of platelet activation-markers such as P-selectin (CD62P) and platelet-derived microparticles. We investigated the effects of losartan and simvastatin on circulating levels of platelet activation markers, microparticles, soluble selectins, and soluble cell adhesion molecules in hypertensive and hyperlipidemic patients with or without Type 2 diabetes.

Methods: The subjects included 25 normotensive healthy controls and 41 hypertensive patients. The 41 hypertensive patients were divided into three groups: group A had hypertension and hyperlipidemia (n = 11), group B had hypertension and Type 2 diabetes (n = 14), and group C had hypertension, hyperlipidemia, and diabetes (n = 16). Losartan was administered to all of the patients at a dose of 50 mg/day for 24 weeks. In addition, simvastatin was administered to the hyperlipidemic patients at a dose of 10 mg/day for 24 weeks.

Results: There were significant differences in the levels of CD62P, CD63, PAC-1, platelet microparticles, endothelial microparticles, sE-selectin, and sVCAM-1 between the hypertensive patients and healthy controls. These markers were all significantly increased in hypertensive and hyperlipidemic patients with Type 2 diabetes. In hypertensive patients with diabetes, CD62P, CD63, PAC-1, platelet and endothelial microparticles, and soluble adhesion markers were all decreased by losartan monotherapy. The decrease of each marker in hypertensive and hyperlipidemic patients given combined therapy with losartan plus simvastatin was greater among those with than without Type 2 diabetes. Low-density lipoprotein was decreased significantly by simvastatin and was correlated with CD62P or platelet microparticles in all of the patients.

Conclusion: Administration of losartan plus simvastatin to hypertensive and hyperlipidemic patients with Type 2 diabetes may prevent the development of cardiovascular complications caused by activated platelets and microparticles via another mechanism in addition to reduction of the blood pressure or lipid levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. Ten years cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia 1993;36:1175–1184.

    Article  CAS  PubMed  Google Scholar 

  2. Pugh JA, Medina RA, Cornell JC, Basu S. NIDDM is the major cause of diabetic end-stage renal disease: More evidence for a tri-ethnic community. Diabetes 1995;44:1375–1380.

    CAS  PubMed  Google Scholar 

  3. Davis TM, Cull CA, Holman RR. Relationship between ethnicity and glycemic control, lipid profiles, and blood pressure during the first 9 years of type 2 diabetes: UK Prospective Diabetes Study (UKPDS 55).Diabetes Care 2001;24:1167–1174.

    CAS  PubMed  Google Scholar 

  4. Lopes-Virella MF, Virella G. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes 1992;41 (Suppl.2):86–91.

    PubMed  Google Scholar 

  5. Carmassi F, Morale M, Puccett R, et al. Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb Res 1992;67:643–654.

    Article  CAS  PubMed  Google Scholar 

  6. Steiner M, Reinhardt KM, Krammer B, Ernst B, Blann AD. Increased levels of soluble adhesion molecules in type 2 (non-insulin dependent) diabetes mellitus are independent of glycaemic control. Thromb Haemost 1994;72:979–984.

    CAS  PubMed  Google Scholar 

  7. Cominacini L, Pasini AF, Garbin U, et al. E-selectin plasma concentration is influenced by glycaemic control in NIDDM patients: Possible role of oxidative stress. Diabetologia 1997;40:584–589.

    Article  CAS  PubMed  Google Scholar 

  8. Schafer AI. The hypercoagulable states. Ann Intern Med 1985;102:814–818.

    CAS  PubMed  Google Scholar 

  9. Frade LJG, de la Calle H, Alava I, Navarro JL, Ceighton LJ, Gaffney PJ. Diabetes as a hypercoagulable state: Its relationship with fibrin fragments and vascular damage. Thromb Res 1987;47:533–540.

    Article  PubMed  Google Scholar 

  10. Tschope D, Esser J, Schwippert B, et al. Large platelets circulate in an activated state in diabetes. Semin Thromb Haemost 1991;17:433–439.

    Google Scholar 

  11. Nomura S, Komiyama Y, Miyake T, et al. Amyloid β-protein precursor-rich platelet microparticles in thrombotic disease. Thromb Haemost 1994;72:519–522.

    CAS  PubMed  Google Scholar 

  12. Nomura S. Functional and clinical significance of platelet- derived microparticles. Int J Haematol 2001;74:397–404.

    CAS  Google Scholar 

  13. Nomura S, Suzuki M, Katsura K, et al. Platelet derived microparticles may influence the development of atherosclerosis in diabetes mellitus. Atherosclerosis 1995;116:235–240.

    Article  CAS  PubMed  Google Scholar 

  14. Nomura S, Shouzu A, Omoto S, et al. Effect of cilostazol on soluble adhesion molecules and platelet-derived microparticles in patients with diabetes. Thromb Haemost 1998;80:388–392.

    CAS  PubMed  Google Scholar 

  15. Mattock MB, Barnes DJ, Viberti GC, et al. Microalbuninuria and coronary heart disease in non-insulin-dependent diabetes: An incidence study. Diabetes 1998;47:1786–1792.

    CAS  PubMed  Google Scholar 

  16. Ruggenenti P, Schieppati A, Remuzzi G. Progression, remission, regression of chronic renal disease. Lancet 2001; 357:1601–1608.

    Article  CAS  PubMed  Google Scholar 

  17. Maschio G, Alberti D, Janin G, et al. Effect of the angiotensin-converting enzyme inhibitor benazepril on the progression of chronic renal insufficiency. N Engl J Med 1996;334:939–945.

    Article  CAS  PubMed  Google Scholar 

  18. Remuzzi A, Perico N, Amuchastegui CS, et al. Short- and long-term effect of angiotensin II receptor blockade in rats with experimental diabetes. J Am Soc Nephrol 1993;4:40–49.

    CAS  PubMed  Google Scholar 

  19. Cheetham C, Collis J, O’Driscoll G, Stanton K, Taylor R, Green D. Losartan, an angiotensin type 1 receptor antagonist, improves endothelial function in non-insulin dependent diabetes. J Am Coll Cardiol 2000;36:1461–1466.

    Article  CAS  PubMed  Google Scholar 

  20. Guerra-Cuesta JI, Monton M, Rodriguez-Feo JA, et al. Effect of losartan on human platelet activation. J Hypertens 1999;17:447–452.

    Article  CAS  PubMed  Google Scholar 

  21. Levy PJ, Yunis C, Owen J, Brosnihan KB, Smith R, Ferrario CM. Inhibition of platelet aggregability by losartan in essential hypertension. Am J Cardiol 2000;86:1188–1192.

    Article  CAS  PubMed  Google Scholar 

  22. Kramer C, Sunkomat J, Witte J, et al. Angiotensin II receptor-independent antiinflammatory and antiaggregatory properties of losartan: Role of the active metabolite EXP3179. Circ Res 2002;90:770–776.

    Article  PubMed  Google Scholar 

  23. Kalinowski L, Matys T, Chabielska E, Buczko W, Malinski T. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release. Hypertension 2002;40:521–527.

    Article  CAS  PubMed  Google Scholar 

  24. The National High Blood Pressure Education Program Working Group. National High Blood Pressure Education Program Working Group Report on Hypertension in diabetes. Hypertension 1994;23:145–158.

    Google Scholar 

  25. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert commitee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997;20:1183–1197.

    Google Scholar 

  26. Investigative Committee on Guidelines for the Diagnosis and Treatment of Hyperlipidemia, Japan Atherosclerosis Society. Guidelines for the Diagnosis and Treatment of Hyperlipidemia in Adults. Doumyakukouka 1997;25:1–34.

    Google Scholar 

  27. Murakami T, Komiyama Y, Masuda M, et al. Flow cytometric analysis of platelet activation markers CD62P and CD63 in patients with coronary artery disease. Eur J Clin Invest 1996;26:996–1003.

    Article  CAS  PubMed  Google Scholar 

  28. Nomura S, Nakamura T, Cone J, Tandon NN, Kambayashi J. Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation. Cytometry 2000;40:173–181.

    Article  CAS  PubMed  Google Scholar 

  29. Miyazaki Y, Nomura S, Miyake T, et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant -containing microparticles. Blood 1996;88:3456–3464.

    CAS  PubMed  Google Scholar 

  30. Miyake T, Nomura S, Komiyama Y, et al.~Effect of a new monoclonal anti-glycoprotein IX antibody, KMP-9, on high shear-induced platelet aggregation. Thromb Haemost 1997;78:902–909.

    CAS  PubMed  Google Scholar 

  31. Combes V, Simon A, Grau G, et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 1999;104:93–102.

    CAS  PubMed  Google Scholar 

  32. Packham MA, Mustard JF. The role of platelets in the development and complications of atherosclerosis. Semin Hematol 1986;23:8–19.

    CAS  PubMed  Google Scholar 

  33. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988;263:18205–18212.

    CAS  PubMed  Google Scholar 

  34. Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayshi J. High shear stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 2001;158:277–287.

    Article  CAS  PubMed  Google Scholar 

  35. Lindholm LH, Ibsen H, Dahlof B, et al. LIFE Study Group. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endopoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 2002;359:1004–1010.

    Article  CAS  PubMed  Google Scholar 

  36. Kjeldsen SE, Dahlof B, Devereux RB, et al. LIFE Study Group. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: A Losartan Intervention for Endopoint Reduction (LIFE) substudy. JAMA 2002;288:1491–1498.

    Article  CAS  PubMed  Google Scholar 

  37. Shahinfar S, Dickson TZ, Ahmed T, et al. For the RENAAL Investigators. Losartan in patients with type 2 diabetes and proteinuria: Observations from the RENAAL study. Kidney Int 2002;82(Suppl):64–67.

    Article  Google Scholar 

  38. Wolf G, Schneider A, Helmchen U, Stahl RA. AT1-receptor antagonists abolish glomerular MCP-1 expression in a model of mesangial proliferative glomerulonephritis. Exp Nephrol 1998;6:112–120.

    Article  CAS  PubMed  Google Scholar 

  39. Hayek T, Aviram M, Heinrich R, Sakhnini E, Keidar S. Losartan inhibits cellular uptake of oxidized LDL by monocyte-macrophages from hypercholesterolemic patients. Biochem Biophys Res Commun 2000;273:417–420.

    Article  CAS  PubMed  Google Scholar 

  40. Rajagopalan S, Brook R, Mehta RH, Supiano M, Pitt B. Effect of losartan in aging-related endothelial impairment. Am J Cardiol 2002;89:562–566.

    Article  CAS  PubMed  Google Scholar 

  41. Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 1998;83:952–959.

    CAS  PubMed  Google Scholar 

  42. Kintscher U, Wakino S, Kim S, Fleck E, Hsueh WA, Law RE. Angiotensin II induces migration and Pyk2/Paxillin phosphorylation of human monocytes. Hypertension 2001;37:587–593.

    CAS  PubMed  Google Scholar 

  43. Ferro D, Parrotto S, Basili S, Alessandri C, Violi F. Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hyper-cholesterolemia. J Am Coll Cardiol 2000;36:427–431.

    Article  CAS  PubMed  Google Scholar 

  44. Teupser D, Bruegel M, Stein O, Stein Y, Thiery J. HMG-CoA reductase inhibitors reduce adhesion of human monocytes to endothelial cells. Biochem Biophys Res Commun 2001;289:838–844.

    Article  CAS  PubMed  Google Scholar 

  45. Serrano Jr CV, Yoshida VM, Venturinelli ML, et al. Effect of simvastatin on monocyte adhesion molecule expression in patients with hypercholesterolemia. Atherosclerosis 2001;157:505–512.

    Article  CAS  PubMed  Google Scholar 

  46. Rezaie-Majd A, Maca T, Bucek RA, et al. Baghestanian. Simvastatin reduces expression of cytokines, interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 2002;22:1194–1199.

    Article  PubMed  Google Scholar 

  47. Lefer DJ. Statins as potent antiinflammatory drugs. Circulation 2002;106:2041–2042.

    Article  PubMed  Google Scholar 

  48. Ceriello A, Taboga C, Tonutti L, et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: Effects of short- and long-term simvastatin treatment. Circulation 2002; 106:1211–1218.

    Article  PubMed  Google Scholar 

  49. Cipollone F, Mezzetti A, Porreca E, et al. Davi. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia–-effects of statin therapy. Circulation 2002;106:399–402.

    Article  CAS  PubMed  Google Scholar 

  50. Ferro D, Basili S, Alessandri C, Cara D, Violi F. Inhibition of tissue–factor-mediated thrombin generation by simvastatin. Atherosclerosis. 2000;149:111–116.

    Article  CAS  PubMed  Google Scholar 

  51. Lee IT, Sheu WHH, Lin SY, Lee WJ, Song YM, Liu HC. Simvasatatin reduces plasma concentration of high-sensitivity C-reactive protein in type 2 diabetic patients with hyperlipidemia. J Diabet Complicat 2002;16:382–385.

    Article  Google Scholar 

  52. Plenge JK, Hernandez TL, Weil KM, et al. Simvastatin lowers C-reactive protein within 14 days–-an effect independent of low-density lipoprotein cholesterol reduction. Circulation 2002;106:1447–1452.

    Article  CAS  PubMed  Google Scholar 

  53. Tsakiris DA, Keller U, Zulewski H, Miserez AR, Wolf F, Marbet GA. Simvastatin reduces activation of normal platelets by LDL isolated from patients with familial hypercholesterolaemia and familial defective apolipoprotein B. Eur J Clin Pharmacol 1997;53:277–279.

    Article  CAS  PubMed  Google Scholar 

  54. Szczeklik A, Musial J, Undas A, et al. Inhibition of thrombin generation by simvastatin and lack of additive effects of aspirin in patients with marked hypercholesterolemia. J Am Coll Cardiol 1999;33:1286–1293.

    Article  CAS  PubMed  Google Scholar 

  55. Kaneider NC, Egger P, Dunzendorfer S, Wiedermann CJ. Rho-GTPase-dependent platelet-neutrophil interaction affected by HMG-CoA reductase inhibition with altered adenosine nucleotide release and function. Arterioscler Thromb Vasc Biol 2002;22:1029–1035.

    Article  CAS  PubMed  Google Scholar 

  56. Zoja C, Corna D, Rottoli D, et al. Remuzzi. Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney Int 2002;61:1635–1645.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shosaku Nomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, S., Shouzu, A., Omoto, S. et al. Losartan and Simvastatin Inhibit Platelet Activation in Hypertensive Patients. J Thromb Thrombolysis 18, 177–185 (2004). https://doi.org/10.1007/s11239-005-0343-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-005-0343-8

Key Words

Navigation