Skip to main content
Log in

Sub-models for interactive unawareness

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

We propose a notion of a sub-model for each agent at each state in the Heifetz et al. (2006) model of interactive unawareness. Presuming that each agent is fully cognizant of his sub-model causes no difficulty and fully describes his knowledge and his beliefs about the knowledge and awareness of others. We use sub-models to motivate the HMS conditions on possibility correspondences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Fagin et al. (1995) used the term event-based approach and compared it to the logic-based approach.

  2. A complete lattice is a pair \(({\mathcal {S}},\preceq )\) where \({\mathcal {S}}\) is a set partially ordered by \(\preceq ,\) and each subset \(B\) of \({\mathcal {S}}\) has an infimum and supremum in \({\mathcal {S}}\).

  3. A set \(B\) has a greatest (least) element under the partial order \(\preceq \) iff there exists some \(a\in B\) such that \(b\preceq a (a\preceq b)\) for all \(b\in B\). Note that since \(\preceq \) is a partial order, the greatest (least) element is unique.

  4. Indeed the fact that it is designated by HMS (p83) as the “(0)” property for possibility correspondences suggests that they felt it was self-evident that this property should be satisfied.

  5. Here, \((r_{S}^{S^{\prime }})^{-1}(B)=\{\omega \in S^{\prime }:r_{S}^{S^{\prime }}(\omega )\in B\}\).

  6. Here, \((\varPi _{i}(\omega ))_{S}=\{\omega _{S}^{\prime }:\omega ^{\prime }\in \varPi _{i}(\omega )\}\).

  7. Since, by R4 in Definition 2, \(\varPi _{i}^{i,\omega }(\omega ^{\prime })=\varPi _{i}(\omega ^{\prime })\), the expression (6) defining SMIC could have been written simply in terms of the possibility correpondence \(\varPi _{i}(\cdot )\) of the full model.

  8. So, the ‘outside analyst’ might be a boundedly aware agent in some larger model.

References

Download references

Acknowledgments

We thank Spyros Galanis, Aviad Heifetz, Sander Heinsalu, and Burkhard Schipper for very constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jude Kline.

Appendix: Proofs

Appendix: Proofs

Proof of Proposition 1

First, we show that \({\mathcal {M}}^{i,\omega }\) satisfies M1. It follows by Definition 2.2. and M1.2 on \({\mathcal {M}}\) that M1.2 holds for \({\mathcal {L}}^{i,\omega } \equiv ({\mathcal {S}}^{i,\omega },\preceq ^{i,\omega })\). Let us see that M1.1 holds as well. Let \(R\subseteq {\mathcal {S}}^{i,\omega }\). By C and Definition 2, there is a unique base space \(S\in {\mathcal {S}}^{i,\omega }\) containing \(\varPi _{i}(\omega )\) and \(T\preceq S\) for all \(T\in R\). By completeness of \({\mathcal {L}}\), the set \(R\) has a supremum, \(\sup (R)\in {\mathcal {S}}\), and infimum, \(\inf (R)\in {\mathcal {S}}\). By the definition of supremum, \(\sup (R)\preceq S\). By Definition 2 , \(\sup (R)\) is also the supremum of \(R\) in \({\mathcal {S}}^{i,\omega }\). Similarly, we find that \(\inf (R)\) is also the infimum of \(R\) in \({\mathcal {S}}^{i,\omega }\). Thus, we have shown that M1.2 holds. That \({\mathcal {M}}^{i,\omega }\) inherits M2, M3 and C follows from inspection of Definition 2. \(\square \)

Proof of Proposition 2

(If-part): Let \((B^{\uparrow },S)\in {\mathcal {E}}\). Then, \(B\subseteq S\), and as such, \((\{\omega ^{\prime }\in S:\varPi _{i}(\omega ^{\prime })\subseteq B\}^{\uparrow },S)\in {\mathcal {E}}\). We will show that \(K_{i}(B^{\uparrow })=\{\omega ^{\prime }\in S:\varPi _{i}(\omega ^{\prime })\subseteq B\}^{\uparrow }\). First, let us see that \(K_{i}(B^{\uparrow })\subseteq \{\omega ^{\prime }\in S:\varPi _{i} (\omega ^{\prime })\subseteq B\}^{\uparrow }\). Let \(\omega \in K_{i}(B^{\uparrow })\). Then \(\omega \in S^{\prime \prime }\) for some \(S^{\prime \prime } \in {\mathcal {S}}\), and by (2), \(\varPi _{i}(\omega )\subseteq B^{\uparrow }\). By C, \(\varPi _{i}(\omega )\subseteq S^{\prime }\) for some \(S^{\prime }\in {\mathcal {S}}\) and \(S^{\prime }\preceq S^{\prime \prime }\). Since \(\varPi _{i} (\omega )\subseteq B^{\uparrow }\cap S^{\prime }\), and \(B\subseteq S\), it follows that \(S\preceq S^{\prime }\) and \((\varPi _{i}(\omega ))_{S}\subseteq B\). So, we have \(S\preceq S^{\prime }\preceq S^{\prime \prime }, \omega \in S^{\prime \prime }\) and \(\varPi _{i}(\omega )\subseteq S^{\prime }\). By PPK, \(\varPi _{i}(\omega _{S} )=(\varPi _{i}(\omega ))_{S}\subseteq B\). This implies that \(\omega _{S}\in \{\omega ^{\prime }\in S:\varPi _{i}(\omega ^{\prime })\subseteq B\}\), which in turn implies \(\omega \in \{\omega ^{\prime }\in S:\varPi _{i}(\omega ^{\prime })\subseteq B\}^{\uparrow }\).

Next, let’s see that \(\{\omega ^{\prime }\in S:\varPi _{i}(\omega ^{\prime })\subseteq B\}^{\uparrow }\subseteq K_{i}(B^{\uparrow })\). Let \(\omega \in \{\omega ^{\prime }\in S:\varPi _{i}(\omega ^{\prime })\subseteq B\}^{\uparrow } \). Then, \(\omega \in S^{\prime }\) for some \(S^{\prime }\in {\mathcal {S}}\) with \(S\preceq S^{\prime }\) and \(\varPi _{i}(\omega _{S})\subseteq B\subseteq S\). By C, \(\varPi _{i}(\omega )\subseteq S^{\prime \prime }\) for some \(S^{\prime \prime }\preceq S^{\prime }\). By NIA, \( S\preceq S^{\prime \prime }\). So, we have \(S\preceq S^{\prime \prime }\preceq S^{\prime }, \omega \in S^{\prime }\) and \(\varPi _{i}(\omega )\subseteq S^{\prime \prime }\). It follows by PPK that \((\varPi _{i}(\omega ))_{S}=\varPi _{i}(\omega _{S})\subseteq B\). Since \(S\preceq S^{\prime \prime }\) and \(\varPi _{i}(\omega )\subseteq S^{\prime \prime }\), we find that \(\varPi _{i}(\omega )\subseteq B^{\uparrow }\). Hence, \(\omega \in K_{i}(B^{\uparrow })\).

(Only if-part): We prove the contrapositive, that is, if PPK or NIA fails, then KE fails. Observe that PPK can be broken into two conditions:

\(\hbox {PPK}^{\supseteq }\) :

If \(S\preceq S^{\prime }\preceq S^{\prime \prime }, \omega \in S^{\prime \prime }\) and \(\varPi _{i}(\omega )\subseteq S^{\prime }\), the \((\varPi _{i}(\omega ))_{S}\supseteq \varPi _{i}(\omega _{S})\).

\(\hbox {PPK}^{\subseteq }\) :

If \(S\preceq S^{\prime }\preceq S^{\prime \prime }, \omega \in S^{\prime \prime }\) and \(\varPi _{i}(\omega )\subseteq S^{\prime }\), then \((\varPi _{i}(\omega ))_{S}\subseteq \varPi _{i}(\omega _{S})\).

We break up the proof into three cases: Case 1: \({\mathcal {M}}\) violates \(\hbox {PPK}^{\supseteq }\); Case 2: \({\mathcal {M}}\) satisfies \(\hbox {PPK}^{\supseteq }\), but violates \(\hbox {PPK}^{\subseteq }\); Case 3: \({\mathcal {M}}\) satisfies PPK, but violates NIA. For each case, we will construct an event \((E,S)\in {\mathcal {E}} \) and show that \((K_{i}(E),S)\notin {\mathcal {E}}\).

  1. Case 1:

    \({\mathcal {M}}\) violates \(\hbox {PPK}^{\supseteq }\).

In this case, we have \(S\preceq S^{\prime }\preceq S^{\prime \prime }, \omega \in S^{\prime \prime }\) and \(\varPi _{i}(\omega )\subseteq S^{\prime }\), but \(\varPi _{i}(\omega _{S})\nsubseteq (\varPi _{i}(\omega ))_{S}\). Consider the event \((E,S)=(\varPi _{i}(\omega ))_{S}^{\uparrow },S)\in {\mathcal {E}}\). We will show that \((K_{i}((\varPi _{i}(\omega ))_{S}^{\uparrow }),S)\notin {\mathcal {E}}\). Suppose, on the contrary, that \((K_{i}((\varPi _{i}(\omega ))_{S}^{\uparrow }),S)\in {\mathcal {E}} \). Then, there must be some set \(B\), such that \(B\subseteq S\), and \(B^{\uparrow }=K_{i}((\varPi _{i}(\omega ))_{S}^{\uparrow })\). Since \(\varPi _{i} (\omega )\subseteq (\varPi _{i}(\omega ))_{S}^{\uparrow }\), it follows that \(\omega \in K_{i}((\varPi _{i}(\omega ))_{S}^{\uparrow })=B^{\uparrow }\). Thus, \(\omega _{S}\in B\subseteq B^{\uparrow }=K_{i}((\varPi _{i}(\omega ))_{S}^{\uparrow }) \). Since \(\varPi _{i}(\omega _{S})\nsubseteq (\varPi _{i}(\omega ))_{S}\), it follows by C that \(\omega _{S}\notin K_{i}((\varPi _{i}(\omega ))_{S}^{\uparrow })\), which is a contradiction. Hence, we conclude that \((K_{i}((\varPi _{i}(\omega ))_{S} ^{\uparrow }),S)\notin {\mathcal {E}}\).

  1. Case 2:

    \({\mathcal {M}}\) satisfies \(\hbox {PPK}^{\supseteq }\), but violates \(\hbox {PPK}^{\subseteq }\).

In this case, we have \(S\preceq S^{\prime }\preceq S^{\prime \prime }, \omega \in S^{\prime \prime }\) and \(\varPi _{i}(\omega )\subseteq S^{\prime }\), but \((\varPi _{i}(\omega ))_{S}\nsubseteq \varPi _{i}(\omega _{S})\). Consider the event \((E,S)=(\varPi _{i}(\omega _{S})^{\uparrow },S)\in {\mathcal {E}}\), which is an event since \({\mathcal {M}}\) satisfies \(\hbox {PPK}^{\supseteq }\). We will show that \((K_{i} (\varPi _{i}(\omega _{S})^{\uparrow }),S)\notin {\mathcal {E}}\). Suppose, on the contrary, that \((K_{i}(\varPi _{i}(\omega _{S})^{\uparrow }),S)\in {\mathcal {E}}\). Then, there must be some set \(B\subseteq S\), and \(B^{\uparrow }=K_{i}(\varPi _{i}(\omega _{S})^{\uparrow })\). Since \(\varPi _{i}(\omega _{S})\subseteq \varPi _{i}(\omega _{S})^{\uparrow }, \omega _{S}\in K_{i}(\varPi _{i}(\omega _{S})^{\uparrow })=\{\hat{\omega }\in \varSigma :\varPi _{i}(\hat{\omega })\subseteq \varPi _{i}(\omega _{S})^{\uparrow }\}\). Since, by assumption, \(B^{\uparrow } =K_{i}(\varPi _{i}(\omega _{S})^{\uparrow })\), it follows that \(\omega \in B^{\uparrow }\). However, since \((\varPi _{i}(\omega ))_{S}\nsubseteq \varPi _{i} (\omega _{S}), \omega \notin K_{i}(\varPi _{i}(\omega _{S})^{\uparrow } )=B^{\uparrow }\), a contradiction. Hence, we conclude that\((K_{i}(\varPi _{i}(\omega _{S})^{\uparrow }),S)\notin {\mathcal {E}}\).

  1. Case 3:

    \({\mathcal {M}}\) satisfies PPK, but violates NIA.

In this case we have \(\omega \in S,\varPi _{i}(\omega )\subseteq S^{\prime }, S^{\ell }\preceq S\), and \(\varPi _{i}(\omega _{S^{\ell }})\subseteq S^{\prime \prime }\) but \(S^{\prime \prime }\npreceq S^{\prime }\). Consider the event \((E,S^{\prime \prime })=(\varPi _{i}(\omega _{S^{\ell }})^{\uparrow },S^{\prime \prime })\in {\mathcal {E}}\), and suppose that there is some set \(B\subseteq S^{\prime \prime }\), and \(B^{\uparrow }=K_{i}(\varPi _{i}(\omega _{S^{\ell } })^{\uparrow })\). Since \(\varPi _{i}(\omega _{S^{\ell }})\subseteq \varPi _{i} (\omega _{S^{\ell }})^{\uparrow }, \omega _{S^{\ell }}\in K_{i}(\varPi _{i} (\omega _{S^{\ell }})^{\uparrow })=B^{\uparrow }\). It follows that \(\omega \in B^{\uparrow }\). However, since \(\varPi _{i}(\omega )\subseteq S^{\prime }\) and \(S^{\prime \prime }\npreceq S^{\prime }, \varPi _{i}(\omega )\nsubseteq \varPi _{i}(\omega _{S^{\ell }})^{\uparrow }\). Hence, \(\omega \notin K_{i}((\varPi _{i}(\omega _{S})^{\uparrow })\), a contradiction. Hence, we conclude that \((K_{i}(\varPi _{i}(\omega _{S})^{\uparrow }),S)\notin {\mathcal {E}}\). \(\square \)

Proof of Proposition 4

(a) First, we show that the function \(f\) is an injection. Suppose \((B^{\uparrow },S)\) and \((C^{\uparrow },S^{\prime })\) are two distinct events in \({\mathcal {E}}_{A_{i},\omega }\). Then, either \(B^{\uparrow }\ne C^{\uparrow }\), or \(S\ne S^{\prime }\). In either case, \((B^{\uparrow ^{i,\omega }},S)\) is distinct from \((C^{\uparrow ^{i,\omega }},S^{\prime })\). Now, let’s see that \(f\) is a surjection. Let \((B^{\uparrow ^{i,\omega }},S)\in {\mathcal {E}}^{i,\omega }\). Then \(S\in {\mathcal {S}}^{i,\omega }, (B^{\uparrow },S)\in {\mathcal {E}}\) and \(f(B^{\uparrow },S)=(B^{\uparrow ^{i,\omega }},S)\). We need to show that \((B^{\uparrow },S)\in {\mathcal {E}}_{A_{i},\omega }\), which is equivalent to showing that \(\omega \in A_{i}(B^{\uparrow })\). Let \(S^{\prime }\) denote the base space containing \(\varPi _{i}(\omega )\). Since \(S\in {\mathcal {S}}^{i,\omega }\) it follows from R1, that \(S\preceq S^{\prime }\). Hence, \(\varPi _{i}(\omega )\subseteq S^{\prime }\in S^{\uparrow }\). By (2), \(\omega \in K_{i}(S^{\uparrow })\).

(b) Let \((B^{\uparrow ^{i,\omega }},S)\) be an event in \({\mathcal {E}} ^{i,\omega }\) and suppose that \(\omega ^{\prime }\in K_{j}^{i,\omega } (B^{\uparrow ^{i,\omega }})\). Then \(\omega ^{\prime }\in \varSigma ^{i,\omega } \subseteq \varSigma \) and \(\varPi _{j}(\omega ^{\prime })\subseteq B^{\uparrow ^{i,\omega }}\subseteq B^{\uparrow }\). Hence, \(\omega ^{\prime }\in K_{j}(B^{\uparrow } )\cap \varSigma ^{i,\omega }\). Conversely, suppose that \(\omega ^{\prime }\in K_{j}(B^{\uparrow })\cap \varSigma ^{i,\omega }\). Then, \(\varPi _{j}(\omega ^{\prime })\subseteq B^{\uparrow }\) and \(\omega ^{\prime }\in \varSigma ^{i,\omega }\). By C, \(\varPi _{j}(\omega ^{\prime })\subseteq \varSigma ^{i,\omega } \). Since \(B^{\uparrow ^{i,\omega }}=B^{\uparrow }\cap \varSigma ^{i,\omega }\), we have \(\varPi _{j} (\omega ^{\prime })\subseteq B^{\uparrow ^{i,\omega }}\). By (2), \(\omega ^{\prime }\in K_{j}^{i,\omega }(B^{\uparrow ^{i,\omega }})\). \(\square \)

Proof of Propostion 5

(If-part) Fix \(\omega \in \varSigma \) and \(i\in N\). First we show \(\varPi _{i}(\omega )\subseteq \{\omega ^{\prime }\in \varSigma ^{i,\omega }:\varPi _{i}(\omega ^{\prime })=\varPi _{i} (\omega )\}\). Let \(\hat{\omega }\in \varPi _{i}(\omega )\) Then, \(\hat{\omega }\in \varSigma ^{i,\omega }\). By ST, \(\varPi _{i}(\hat{\omega })=\varPi _{i}(\omega )\). Hence, \(\hat{\omega }\in \{\omega ^{\prime }\in \varSigma ^{i,\omega }:\varPi _{i}(\omega ^{\prime })=\varPi _{i}(\omega )\}\). Next we show \(\{\omega ^{\prime }\in \varSigma ^{i,\omega } :\varPi _{i}(\omega ^{\prime })=\varPi _{i}(\omega )\}\subseteq \varPi _{i}(\omega )\). Let \(\hat{\omega }\in \varSigma ^{i,\omega }\) such that \(\varPi _{i}(\hat{\omega })=\varPi _{i}(\omega )\). By C, \(\varPi _{i}(\hat{\omega })\subseteq S(\hat{\omega })\). Hence, by RGA, \(\hat{\omega }\in \varPi _{i}(\hat{\omega })=\varPi _{i}(\omega )\).

(Only if-part) Suppose first that RGA fails. Then, for some \(\omega \in \varSigma \) and \(i\in N\), we have \(\hat{\omega }\in \varSigma ^{i,\omega }\) such that \(\varPi _{i}(\hat{\omega })\subseteq S(\hat{\omega })\), but \(\hat{\omega }\notin \varPi _{i}(\hat{\omega })\). Then, \(\hat{\omega }\in \varSigma ^{i,\hat{\omega }}\), so \(\hat{\omega }\in \{\omega ^{\prime }\in \varSigma ^{i,\hat{\omega }}:\varPi _{i} (\omega ^{\prime })=\varPi _{i}(\hat{\omega })\}\). Hence, \(\varPi _{i}(\hat{\omega })\ne \{\omega ^{\prime }\in \varSigma ^{i,\hat{\omega }}:\varPi _{i}(\omega ^{\prime })=\varPi _{i}(\hat{\omega })\}\), that is, \({\mathcal {M}}\) violates SMIC.

Finally, suppose that ST fails, i.e., there are \(\omega ,\hat{\omega }\in \varSigma \) such that \(\hat{\omega }\in \varPi _{i}(\omega )\) but \(\varPi _{i}(\hat{\omega })\ne \varPi _{i}(\omega )\). Then \(\hat{\omega }\notin \{\omega ^{\prime }\in \varSigma ^{i,\omega }:\varPi _{i}(\omega ^{\prime })=\varPi _{i}(\omega )\}\). Hence, \({\mathcal {M}}\) violates SMIC. \(\square \)

The proof of Theorem 1 is based on the following Lemma.

Lemma 1

Fix a model \({\mathcal {M}}\) satisfying PPK. \({\mathcal {M}}\) satisfies RGA if and only if \({\mathcal {M}}\) satisfies GR.

Proof

The if-part is immediate from the definitions of RGA and GR. We prove the only if-part. Suppose \(\omega \in \varSigma \). If \(\varPi _{i}(\omega )\subseteq S(\omega )\), then by RGA, we have \(\omega \in \varPi _{i}(\omega )\). Since \(\varPi _{i}(\omega )\subseteq \varPi _{i}(\omega )^{\uparrow }\), GR holds. If, alternatively, \(\varPi _{i}(\omega )\nsubseteq S(\omega )\), then by C, \(\varPi _{i}(\omega )\subseteq S\) for some \(S\prec S(\omega )\). Observe that we have \(S\preceq S\preceq S(\omega ), \omega \in S(\omega )\) and \(\varPi _{i} (\omega )\subseteq S\). Hence by PPK, \((\varPi _{i}(\omega ))_{S}=\varPi _{i}(\omega _{S})\). Since \((\varPi _{i}(\omega ))_{S}\subseteq S\), we have \(\varPi _{i}(\omega _{S})\subseteq S\). Applying RGA to \(\omega _{S}\), we find \(\omega _{S}\in \varPi _{i}(\omega _{S})\). As observed already, \((\varPi _{i}(\omega ))_{S}=\varPi _{i} (\omega _{S})\), so \(\omega _{S}\in (\varPi _{i}(\omega ))_{S}\). But, since \(\varPi _{i}(\omega )\subseteq S, (\varPi _{i}(\omega ))_{S}=\varPi _{i}(\omega )\), we have \(\omega _{S}\in \varPi _{i}(\omega ) \) and \(\omega \in \varPi _{i}(\omega )^{\uparrow }\), that is GR holds. \(\square \)

Proof of Theorem 1

(Only if-part): PPK and NIA follow from KE and Proposition 2. GR and ST follow from SMIC and Proposition 5 and Lemma 1. It remains only to show PPI.

Let \(\omega \in S^{\prime \prime }\) and \(S\preceq S^{\prime \prime }\). We need to show that \(\varPi _{i}(\omega )^{\uparrow }\subseteq \varPi _{i}(\omega _{S})^{\uparrow }\). By C, \(\varPi _{i}(\omega )\subseteq S^{*}\) for some \(S^{*}\preceq S^{\prime \prime }\), and \(\varPi _{i}(\omega _{S})\subseteq S^{\prime }\) for some \(S^{\prime }\preceq S\). By NIA, \(S^{\prime }\preceq S^{*}\). We will show the following two things:

  1. (a)

    \(\varPi _{i}(\omega )^{\uparrow }\subseteq \varPi _{i}(\omega _{S^{\prime }} )^{\uparrow }\);

  2. (b)

    \(\varPi _{i}(\omega _{S^{\prime }})=\varPi _{i}(\omega _{S})\).

First, let’s see (a). From our results above, we have \(S^{\prime }\preceq S^{*}\preceq S^{\prime \prime }, \omega \in S^{\prime \prime }\), and \(\varPi _{i}(\omega )\subseteq S^{*}\). Hence, \(\varPi _{i}(\omega )^{\uparrow } \subseteq (\varPi _{i}(\omega ))_{S^{\prime }}^{\uparrow }\). It follows by \(\hbox {PPK}^{\prime }\) that \((\varPi _{i}(\omega ))_{S^{\prime }}=\varPi _{i}(\omega _{S^{\prime }}) \), whence \(\varPi _{i}(\omega )^{\uparrow }\subseteq \varPi _{i}(\omega _{S^{\prime } })^{\uparrow }\) as required.

Next, let’s see (b). Since \(\varPi _{i}(\omega _{S})\subseteq S^{\prime }\), it follows by GR that \(\omega _{S^{\prime }}\in \varPi _{i}(\omega _{S})\). Hence, by ST, \(\varPi _{i}(\omega _{S^{\prime }})=\varPi _{i}(\omega _{S})\) and (b) has been proved. It follows immediately from (a) and (b) that \(\varPi _{i}(\omega )^{\uparrow } \subseteq \varPi _{i}(\omega _{S})^{\uparrow }\), that is, we have proved PPI.

(If-part): As noted by HMS in their remark 2 on p.83, PPI and C imply NIA. Hence, KE follows from PPK and NIA using Proposition 2. SMIC follows from Proposition 5 and Lemma 1 using GR, ST, and PPK. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, S., Kline, J.J., O’Callaghan, P. et al. Sub-models for interactive unawareness. Theory Decis 79, 601–613 (2015). https://doi.org/10.1007/s11238-015-9485-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-015-9485-0

Keywords

Navigation