Skip to main content
Log in

Finding socially best spanning trees

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

This article combines Social Choice Theory with Discrete Optimization. We assume that individuals have preferences over edges of a graph that need to be aggregated. The goal is to find a socially “best” spanning tree in the graph. As ranking all spanning trees is becoming infeasible even for small numbers of vertices and/or edges of a graph, our interest lies in finding algorithms that determine a socially “best” spanning tree in a simple manner. This problem is closely related to the minimum (or maximum) spanning tree problem in Discrete Optimization. Our main result shows that for the various underlying ranking rules on the set of spanning trees discussed in this article, the sets of “best” spanning trees coincide. Moreover, a greedy algorithm based on a transitive group ranking on the set of edges will always provide such a “best” spanning tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja R. K., Magnanti T. L., Orlin J. B. (1993) Network flows: Theory, algorithms, and applications. Prentice Hall, New Jersey

    Google Scholar 

  • Barbera, S., Bossert, W., & Pattanaik, P. K. (2004). Ranking sets of objects. In Handbook of utility theory (Vol. 2, pp. 893–977). Berlin: Springer.

  • Bartholdi J. J., Tovey C. A., Trick M. A. (1989) Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6(2): 157–165

    Article  Google Scholar 

  • Bern, M. W., & Eppstein, D. (1993). Worst-case bounds for subadditive geometric graphs. In SCG ’93: Proceedings of the 9th Annual Symposium on Computational Geometry (pp. 183–188). San Diego, New York: ACM.

  • Black D. (1958) The theory of committees and elections. Cambridge University Press, Cambridge

    Google Scholar 

  • Bogomolnaia A., Moulin H. (2010) Sharing the cost of a minimal cost spanning tree: Beyond the folk solution. Games and Economic Behavior 69(2): 238–248

    Article  Google Scholar 

  • Bossert W., Pattanaik P. K., Xu Y. (2000) Choice under complete uncertainty. Economic Theory 16(2): 295–312

    Article  Google Scholar 

  • Bossert W., Sprumont Y., Suzumura K. (2005) Maximal-element rationalizability. Theory and Decision 58(4): 325–350

    Article  Google Scholar 

  • Brams S. J., Fishburn P. C. (1983) Approval voting. Birkhäuser, Boston

    Google Scholar 

  • Brams S. J., Fishburn P. C. (2002) Voting procedures. In: Arrow K. J., Sen A. K., Suzumura K. (eds) Handbook of social choice and welfare. Elsevier, Amsterdam, pp 173–236

    Google Scholar 

  • Brualdi R. A. (1969) Comments on bases in dependence structures. Bulletin of the Australian Mathematical Society 1(2): 161–167

    Article  Google Scholar 

  • Copeland, A. H. (1951). A ‘Reasonable’ social welfare function. Notes from a seminar on applications of mathematics to the social sciences, University of Michigan.

  • Darmann A., Klamler C., Pferschy U. (2009) Maximizing the minimum voter satisfaction on spanning trees. Mathematical Social Sciences 58(2): 238–250

    Article  Google Scholar 

  • Darmann A., Klamler C., Pferschy U. (2010) A note on maximizing the minimum voter satisfaction on spanning trees. Mathematical Social Sciences 60(1): 82–85

    Article  Google Scholar 

  • Dutta B., Kar A. (2004) Cost monotonicity, consistency and minimum cost spanning tree games. Games and Economic Behavior 48(2): 223–248

    Article  Google Scholar 

  • Fishburn P. C. (1992) Signed orders and power set extensions. Journal of Economic Theory 56(1): 1–19

    Article  Google Scholar 

  • Flament C., Leclerc B. (1983) Arbres minimaux d’un graphe preordonne. Discrete Mathematics 46(2): 159–171

    Article  Google Scholar 

  • Jungnickel D. (2004) Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics). Springer, Berlin

    Google Scholar 

  • Nurmi H. (2007) Voting Procedures under Uncertainty. Springer, Berlin

    Google Scholar 

  • Perny P., Spanjaard O. (2005) A preference-based approach to spanning trees and shortest paths problems. European Journal of Operational Research 127(3): 584–601

    Article  Google Scholar 

  • Roberts F. S. (1979) Measurement theory, with applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Boston

    Google Scholar 

  • Roberts F. S. (1991) Characterizations of the plurality function. Mathematical Social Sciences 21(2): 101–127

    Article  Google Scholar 

  • Saari D. G. (1995) Basic Geometry of Voting. Springer, Berlin

    Google Scholar 

  • Schrijver A. (2003) Combinatorial Optimization: Polyhedra and Efficiency, volume B. Springer, Berlin

    Google Scholar 

  • Slater P. (1961) Inconsistencies in a schedule of paired comparisons. Biometrica 48: 303–312

    Google Scholar 

  • Welsh D. J. (1976) Matroid theory. Academic Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Darmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darmann, A., Klamler, C. & Pferschy, U. Finding socially best spanning trees. Theory Decis 70, 511–527 (2011). https://doi.org/10.1007/s11238-010-9228-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-010-9228-1

Keywords

Navigation