Skip to main content
Log in

Graphene Oxide Composites with Silver Nanoparticles: Photochemical Formation and Electrocatalytic Activity in the Oxidation of Methanol and Formaldehyde

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The photolysis of AgCl nanoparticles stabilized in aqueous solution by graphene oxide or photo reduced graphene oxide using visible light gave nanocomposites containing silver nanoparticles with mean diameter 25-30 nm. These composites have electrocatalytic activity in the oxidation of methanol and formaldehyde in alkaline media. The oxidation of formaldehyde occurs prior to the electrochemical formation of the oxide phase on the silver nanoparticle surface, while the oxidation of methanol occurs after the electrochemical formation of the oxide phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Chen, L. Tang, and L. Li, Chem. Soc. Rev., 39, No. 8, 3157-3180 (2010).

    Article  CAS  Google Scholar 

  2. Z. Liu, W. Xu, J. Fang, et al., Appl. Surface Sci., 259, 441-447 (2012).

    CAS  Google Scholar 

  3. X. An and J. C. Yu, RSC Adv., 1, No. 8, 1426-1434 (2011).

    Article  CAS  Google Scholar 

  4. Y. H. Ng, I. V. Lightcap, K. Goodwin, et al., J. Phys. Chem. Lett., 1, No.15, 2222-2227 (2010).

    CAS  Google Scholar 

  5. S. R. Kim, S. R. Parvez, and M. Chhowalla, Chem. Phys. Lett., 483, Nos. 1-3, 124-127 (2009).

    CAS  Google Scholar 

  6. R. Y. N. Gengler, K. Spyrou, and P. Rudolf, J. Phys. D, 43, No. 37, 374015 (2010).

    Article  Google Scholar 

  7. Y. Shao, J. Wang, M. Engelhard, et al., J. Mater. Chem., 20, No. 35, 743-748 (2010).

    CAS  Google Scholar 

  8. M. Jin, T. H. Kim, S. C. Lim, et al., Funct. Mater., 21, No. 18, 3496-3501 (2011).

    Article  CAS  Google Scholar 

  9. V. A. Smirnov, Yu. M. Shul’ga, N. N. Denisov, et al., Ross. Nanotekhnol., 7, Nos. 3/4, 81-86 (2012).

    Google Scholar 

  10. S. B. Bon, M. Piccinini, A. Mariani, et al., Diamond Rel. Mater., 20, No. 7, 871-874 (2011).

    Article  CAS  Google Scholar 

  11. V. A. Smirnov, A. A. Arbuzov, Yu. M. Shul’ga, et al., High Energy Chemistry, 45, No. 1, 57-61 (2011).

    Article  CAS  Google Scholar 

  12. V. G. Plotnikov, V. A. Smirnov, M. V. Alfimov, et al., High Energy Chemistry, 45, No. 5, 411-415 (2011).

    Article  CAS  Google Scholar 

  13. L. Feng, G. Gao, P. Huang, et al., Nanoscale Res. Lett., 6, No. 1, 551-561 (2011).

    Article  Google Scholar 

  14. L. Lu, J. Liu, Y. Hu, et al., Adv. Mater., 25, No. 9, 1270-1274 (2013).

    Article  CAS  Google Scholar 

  15. A. Mao, D. Zhang, X. Jin, et al., J. Phys. Chem. Solids, 73, No. 8, 982-986 (2012).

    CAS  Google Scholar 

  16. T. Kuila, S. Bose, P. Khanra, et al., Biosens. Bioelectron., 26, No. 12, 4637-4648 (2011).

    Article  CAS  Google Scholar 

  17. M. Avramov-Iviæ, V. Jovanoviæ, G. Vlajniæ, and J. Popiæ, J. Electroanal. Chem., 423, Nos. 1/2, 119-124 (1997).

    Article  Google Scholar 

  18. S. Park, Y. Xie, and M. J. Weaver, Langmuir, 18, No. 15, 5792-5798 (2002).

    Article  CAS  Google Scholar 

  19. C. Tan, X. Huang, and H. Zhang, Mater. Today, 16, Nos. 1/2, 29-36 (2013).

    Article  CAS  Google Scholar 

  20. C. Roy, E. Bertin, M. H. Martin, et al., Electrocatal., 4, No. 2, 76-84 (2013).

    Article  CAS  Google Scholar 

  21. G.-W. Yang, G.-Y. Gao, C. Wang, et al., Carbon, 46, No. 5, 747-752 (2008).

    Article  CAS  Google Scholar 

  22. J. Geng, Y. Bi, and G. Lu, Electrochem. Commun., 11, No. 6, 1255-1258 (2009).

    Article  CAS  Google Scholar 

  23. D. J. Guo and H. L. Li, Carbon, 43, No. 6, 1259-1264 (2005).

    Article  CAS  Google Scholar 

  24. A. N. Latyshev, T. V. Voloshina, L. Ya. Kaplun, et al., Zh. Fiz. Khim., 65, No. 6, 1491-1497 (1991).

    CAS  Google Scholar 

  25. C. Nethravathia, T. Nishaa, N. Ravishankarb, et al., Carbon, 47, No. 8, 2054-2059 (2009).

    Article  Google Scholar 

  26. D. R. Dreyer, S. Park, C. W. Bielawski, et al., Chem. Soc. Rev., 39, No. 1, 228-240 (2010).

    Article  CAS  Google Scholar 

  27. S. Park and R. S. Ruoff, Nature Nanotechnol., 4, No. 4, 217-224 (2009).

    Article  CAS  Google Scholar 

  28. A. L. Stroyuk, N. S. Andryushina, N. D. Shcherban’, et al., Teor. Éksp. Khim., 48, No. 1, 1-11 (2012). [Theor. Exp. Chem., 48, No. 1, 2-13 (2012) (English translation).]

  29. T. H. James, The Theory of the Photographic Process, Macmillan, New York (1977).

    Google Scholar 

  30. M. Hepel and M. Tomkiewicz, J. Electrochem. Soc., 131, No. 6, 1288-1294 (1984).

    Article  CAS  Google Scholar 

Download references

This work was carried out with the partial financial support of the Basic Research Programs of the National Academy of Sciences of Ukraine “Fundamental problems of nanostructural systems, nanomaterials, and nanotechnology” as well as “Fundamental problems in the creation of new compounds and materials in chemical industry” (Project 14-14). Further support was from the State Basic Research Fund of Ukraine (Project No. F41.2/005). The authors are grateful to N. A. Skorik of Nanomedtech and I. V. Vasilenko of the L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine for assistance in obtaining the electron microscopy data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Stroyuk.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 50, No. 3, pp. 152-159, May-June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andryushina, N.S., Stroyuk, A.L., Ustavytska, O.O. et al. Graphene Oxide Composites with Silver Nanoparticles: Photochemical Formation and Electrocatalytic Activity in the Oxidation of Methanol and Formaldehyde. Theor Exp Chem 50, 155–161 (2014). https://doi.org/10.1007/s11237-014-9359-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-014-9359-5

Keywords

Navigation