Skip to main content

Advertisement

Log in

Tri-reforming of methane on structured Ni-containing catalysts

  • Published:
Theoretical and Experimental Chemistry Aims and scope

We have studied the process of methane tri-reforming (MTR), which is s synergistic combination of steam and carbon dioxide reforming together with partial oxidation of CH4 on a single catalyst. We have established that structured catalysts Ni/(CeO2, La2O3)/Al2O3/cordierite enable stable occurrence of methane tri-reforming with high conversion of CH4 and CO2. The positive effect of oxygen may be associated with formation, on the surface of the catalyst, of local “hot zones” favoring the occurrence of the endothermic reactions of carbon dioxide and steam reforming. By varying the content of the components in the reaction mixture (O2, H2O, CO2), we can control the H2/CO ratio (1.4-2.5) in the synthesis gas and the thermal conditions of the process, including carrying it out under autothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. V. S. Artyunov and O. V. Krylov, Usp. Khim., 12, 1216–1245 (2005).

    Google Scholar 

  2. O. V. Krylov, Ros. Khim. Zh., 44, No. 1, 19–33 (2000).

    CAS  Google Scholar 

  3. M. Rezaei, S. M. Alavi, S. Sahebdelfar, et al., Appl. Catal. B, 77, 346–354 (2008).

    Article  CAS  Google Scholar 

  4. S. Corthals, J. V. Nederkassel, J. Geboers, et al., Catal. Today, 138, 28–32 (2008).

    Article  CAS  Google Scholar 

  5. S. A. Soloviev, Ye. V. Gubareni, and Ya. P. Kurilets, Teor. Éksp. Khim., 44, No. 6, 359–364 (2008). [Theor. Exp. Chem., 44, No. 6, 368–373 (2008) (English translation).]

    Google Scholar 

  6. S. A. Soloviev, Katal. Prom., No. 4, 31–42 (2011).

    Google Scholar 

  7. C. Song and W. Pan, Catal. Today, 98, 463–484 (2004).

    Article  CAS  Google Scholar 

  8. S.-H. Lee, W. Cho, W.-S. Ju, et al., Catal. Today, 87, 133–137 (2003).

    Article  CAS  Google Scholar 

  9. D. Fiaschi and A. Baldini, Energy Convers. Managem., 50, 2083–2097 (2009).

    Article  CAS  Google Scholar 

  10. Zh. Cheng, Q. Wu, J. Li, et al., Catal. Today, 30, 147–155 (1996).

    Article  CAS  Google Scholar 

  11. X. Cai, X. Dong, and W. Lin, J. Nat. Gas. Chem., 17, 98–102 (2008).

    Article  CAS  Google Scholar 

  12. Y.-A. Zhu, D. Chen, X.-G. Zhou, and W.-K. Yuan, Catal. Today, 148, 260–267 (2009).

    Article  CAS  Google Scholar 

  13. J. Z. Luo, L. Z. Gao, C. F. Ng, and C. T. Au, Catal. Lett., 62, 153–158 (1999).

    Article  CAS  Google Scholar 

  14. J. S. Kang, D. H. Kim, S. D. Lee, et al., Appl. Catal. A, 332, 153–158 (2007).

    Article  CAS  Google Scholar 

  15. H. Özdemir, M. A. F. Öksüzömer, and M. A. Gürkaynak, Int. J. Hydrogen Energy, 35, 12147–12160 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Solov’ev.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 48, No. 3, pp. 184-190, May-June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solov’ev, S.A., Gubareni, Y.V., Kurilets, Y.P. et al. Tri-reforming of methane on structured Ni-containing catalysts. Theor Exp Chem 48, 199–205 (2012). https://doi.org/10.1007/s11237-012-9262-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-012-9262-x

Key words

Navigation