Skip to main content
Log in

Antioxidant activity of thiamine and its structural analogs in reactions with electrochemically generated hydroxyl radicals and hydrogen peroxide

  • Published:
Theoretical and Experimental Chemistry Aims and scope

We have used differential pulse voltammetry on platinum and copper cathodes to study the antioxidant activity of thiamine (vitamin B1) and its structural analogs. The results indicate that the activity of thiamine relative to the hydroxyl radical is lower than the activity of 3-benzyl-4-methyl-5-(2-hydroxyethyl)thiazolium chloride. At the same time, thiamine can more efficiently react with hydrogen peroxide and bind divalent iron ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Evidence that the observed processes occur on the surface of the electrode comes from data on adsorption of the analyte compounds over the entire range of potentials.

References

  1. R. Kluger and S. Rathgeber, FEBS J., 275, No. 24, 6089–6100 (2008).

    Article  CAS  Google Scholar 

  2. L. Bettendorff and P. Wins, FEBS J., 276, 2917–2925 (2009).

    Article  CAS  Google Scholar 

  3. N. Shangari, R. Mehta, and P. J. O’Brien, Chem. Biol. Interact., 165, 146–154 (2007).

    Article  CAS  Google Scholar 

  4. A. A. Booth, R. G. Khalifah, P. Todd, and B. G. Hudson, J. Biol. Chem., 272, 5430–5437 (1997).

    Article  CAS  Google Scholar 

  5. P. I. Lukienko, N. G. Mel’nichenko, I. V. Zverinskii, and S. V. Zabrodskaya, Bull. Exp. Biol. Med., 130, No. 9, 874–876 (2000).

    Article  CAS  Google Scholar 

  6. I. L. Jung and I. G. Kim, Environ. Toxicol. Pharmacol., No. 3, 19–26 (2003).

  7. Y. Okai, K. Higashi-Okai, E. F. Sato, et al., J. Clin. Biochem. Nutr., No. 40, 42–48 (2007).

  8. G. S. Shapoval, V. F. Gromovaya, I. E. Mironyuk, and O. S. Kruglyak, Zh. Obshch. Khim., 78, No. 12, 2040–2044 (2008).

    Google Scholar 

  9. Y.-L. Hu, Y. Lu, G.-J. Zhou, and X.-H. Xia, Talanta, 74, 760–765 (2008).

    Article  CAS  Google Scholar 

  10. F. Antunes, L. R. C. Barclay, K. U. Ingold, et al., Free Radic. Biol. Med., 26, 117–128 (1999).

    Article  CAS  Google Scholar 

  11. M. Kessler, G. Ubeaud, and L. Jung, J. Pharm. Pharmacol., 55, 131–142 (2003).

    Article  CAS  Google Scholar 

  12. I. E. Mironyuk, G. S. Shapoval, V. F. Gromovaya, et al., Teor. Éksp. Khim., 40, No. 2, 105–109 (2004). [Theor. Exp. Chem., 40, No. 2, 110–114 (2004) (English translation).]

    Google Scholar 

  13. A. A. Revina, P. M. Zaitsev, L. R. Sharifullina, and N. V. Bryantseva, Issledovano v Rossii [Russian electronic journal], 2563–2570 (2004).

  14. G. D. Maier and D. E. Metzler, J. Am. Chem. Soc., 79, No. 16, 4386–4391 (1957).

    Article  CAS  Google Scholar 

  15. J. M. El Hage Chahine, J. Chem. Soc., Perkin Trans. II, 4, 505–511 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Shapoval.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 47, No. 1, pp. 50–55, January-February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapoval, G.S., Babii, L.V., Kruglyak, O.S. et al. Antioxidant activity of thiamine and its structural analogs in reactions with electrochemically generated hydroxyl radicals and hydrogen peroxide. Theor Exp Chem 47, 55–60 (2011). https://doi.org/10.1007/s11237-011-9185-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-011-9185-y

Key words

Navigation