Skip to main content
Log in

Oxidative conversion of methane and methanol on M/Al2O3/cordierite structured metal oxide catalysts (m = Ni, Cu, Zn)

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

A study was carried out on the properties of Ni/Al2O3 and Cu-ZnO/Al2O3 composites supported on ceramic honeycomb monoliths made from synthetic cordierite in the carbon dioxide conversion of methane and the partial oxidation of methanol. The structured nickel-alumina catalysts are significantly more efficient than the conventional granulated catalysts. The improved working stability of these catalysts was achieved by adjusting the acid-base properties of the surface by introducing sodium and potassium oxides, which leads to inhibition of surface carbonization. The hydrogen yield was close to 90% in the partial oxidation of methanol with a stoichiometric reagent ratio in the presence of the Cu-ZnO/Al2O3/cordierite catalyst. A synergistic effect was found, reducing the selectivity of CO formation in the presence of the Cu-ZnO catalyst relative to samples derived from the individual components Cu and ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ch. Song and P. Wei, Catal. Today, 98, 463–484 (2004).

    Article  CAS  Google Scholar 

  2. O. V. Krylov, Ros. Khim. Zh., 44, No. 1, 19–33 (2000).

    CAS  Google Scholar 

  3. S.-H. Lee, W. Cho, W.-S. Ju, et al., Catal. Today, 87, 133–137 (2003).

    Article  CAS  Google Scholar 

  4. B.-Q. Xu, J.-M. Wei, Y.-T. Yu, et al., J. Phys. Chem. B, 107, 5203–5207 (2003).

    Article  CAS  Google Scholar 

  5. O. Toshihiko and M. Toshiaki, J. Catal., 204, No. 1, 89–97 (2001).

    Article  Google Scholar 

  6. E. I. Klabunovskii, V. P. Mordovin, and O. V. Krylov, Katal. Khim. Neftekhim. Prom., No. 6, 3–9 (2004).

  7. K. Geissler, E. Newson, F. Vogel, et al., Phys. Chem. Chem. Phys., 3, 289–293 (2001).

    Article  CAS  Google Scholar 

  8. L. A. Espinosa, R. M. Lago, M. A. Peña, and J. L. G. Fierro, Topics Catal., 22, Nos. 3/4, 245–251 (2003).

    Article  CAS  Google Scholar 

  9. S. Schuyten and E. E. Wolf, Catal. Lett., 106, Nos. 1/2, 7–14 (2006).

    Article  CAS  Google Scholar 

  10. H. Purnama, F. Girgsdies, T. Ressler, et al., Catal. Lett., 94, Nos. 1/2, 61–68 (2004).

    Article  CAS  Google Scholar 

  11. Z. Hou, O. Yokota, T. Tanaka, and T. Yashima, Catal. Lett., 89, Nos. 1/2, 121–127 (2003).

    Article  CAS  Google Scholar 

  12. V. Yu. Bychkov, O. V. Krylov, and V. N. Korchak, Kinet. Katal., 43, No. 1, 94–103 (2002).

    Google Scholar 

  13. V. Yu. Bychkov, Yu. P. Tyulenin, O. V. Krylov, and V. N. Korchak, Kinet. Katal., 43, No. 5, 775–782 (2002).

    Google Scholar 

  14. M. C. J. Bradford and M. A. Vannice, Appl. Catal. A, 142, No. 1, 73–96 (1996).

    Article  CAS  Google Scholar 

  15. A. A. Firsova, Yu. P. Tyulenin, T. I. Khomenko, et al., Kinet. Katal., 44, No. 6, 893–901 (2003).

    Google Scholar 

  16. A. Yu. Kapran and S. N. Orlik, Teor. Éksp. Khim., 41, No. 6, 360–363 (2005). [Theor. Experim. Chem., 41, No. 6, 377–381 (2005) (Engl. Transl.).]

    Google Scholar 

  17. A. A. Ketov, D. V. Saulin, I. S. Puzanov, et al., Zh. Prikl. Khim., 70, No. 3, 446–450 (1997).

    CAS  Google Scholar 

  18. V. Yu. Bychkov, V. N. Korchak, O. V. Krylov, et al., Kinet. Katal., 42, No. 4, 618–631 (2001).

    Google Scholar 

  19. V. S. Artyunov and O. V. Krylov, Usp. Khim., 74, No. 12, 1216–1244 (2005).

    Google Scholar 

  20. J.-H. Kim, D. J. Suh, T.-J. Park, et al., V International Natural Gas Conversion Symposium, Giardini-Naxos, Sicily, 20–25 September, 1998, Elsevier, Amsterdam (1998), pp. 771–776.

    Book  Google Scholar 

  21. Z. Xu, Y. Li, J. Zhang, and R. Zhou, Appl. Catal. A, 213, No. 1, 65–71 (2001).

    Article  CAS  Google Scholar 

  22. T. Osaki and T. Mori, J. Catal., 204, No. 1, 89–97 (2001).

    Article  CAS  Google Scholar 

  23. P. H. Matter, D. J. Braden, and U. S. Ozkan, J. Catal., 223, 340–351 (2004).

    Article  CAS  Google Scholar 

  24. X.-R. Zhang, L.-C. Wang, C.-Z. Yao, et al., Catal. Lett., 10, Nos. 3/4, 183–190 (2005).

    Article  Google Scholar 

  25. B. L. Kniep, F. Girgsdies, and T. Ressler, J. Catal., 236, 34–44 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Solov’ev.

Additional information

__________

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 43, No. 5, pp. 299–306, September–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solov’ev, S.A., Kapran, A.Y. & Orlik, S.N. Oxidative conversion of methane and methanol on M/Al2O3/cordierite structured metal oxide catalysts (m = Ni, Cu, Zn). Theor Exp Chem 43, 325–333 (2007). https://doi.org/10.1007/s11237-007-0040-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-007-0040-0

Key words

Navigation