Skip to main content

Advertisement

Log in

In preparation towards future cellular networks: the detailed analysis of macro and micro site densification and sector densification

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The next generation of cellular networks is expected to provide huge capacity, and site densification is one of the possible solution to increase the network capacity. The target of this paper is to show the impact of macro/micro site densification and higher order sectorization on signal strength, signal quality and throughput in LTE network. It also highlights the impact of site and sector densification on the cell overlapping and cell border areas. A detailed techno-economical analysis along with area power consumption and area spectral efficiency is also provided in this paper. In site densification, the intersite distance (ISD) between the base station sites is decreased, which results in strong inter cell interference. The results presented in this paper show that the spectral efficiency of the cell decreases with the site densification. However, the average area spectral efficiency increases due to a larger number of cells in the densified network. At the same time the number of cell border users overlapped by multiple servers also increases with the site and sector densification. It is shown that in one square kilometer, increasing the number of cells from 14 (3-sector site with 500 m ISD) to 693 (6-sector site with 100 m ISD) relatively improves the area spectral efficiency by 24.5 times at the cost of 49.5 times more number of cells. Almost identical power efficiency is provided with 3-, and 6-sector site. However, a higher order sectored site was found to be more cost efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andrews, J. G., Buzzi, S., Wan Choi, S. V., Hanly, A., Lozano, A. K., & Soong, J. C. Zhang. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  2. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  3. Nokia Networks. FutureWorks: Looking ahead to 5G—Building a virtual zero latency gigabit experience. 5G White Paper, p. 16. Available http://networks.nokia.com/file/28771/5g-white-paper.

  4. Dahlman, E., Mildh, G., Parkvall, S., Peisa, J., Sachs, J., & Selén, Y. (2014). 5G radio access. Ericsson Review, 91(6), 2–7. Available: http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2014/er-5g-radio-access.pdf.

  5. Huawei Technologies Co., Ltd. (2013). 5G: A technology vision (Online). White Paper. Available http://www.huawei.eu/events/huaweis-5geurope-summit-2014.

  6. Richter, F., & Fettweis, G. (2010). Cellular mobile network densification utilizing micro base stations. In IEEE International conference on communications (ICC), (pp. 1–6).

  7. Tombaz, S., Sung, Ki Won, & Zander, J. (2012). Impact of densification on energy efficiency in wireless access networks. In IEEE globecom workshops (GC Wkshps) (pp. 57–62).

  8. Yunas, S. F., Isotalo, T., Niemelä, J., & Valkama, M. (2013). Impact of macrocellular network densificationon the capacity, energy and cost efficiency in dense urban environment. International Journal of Wireless and Mobile Networks (IJWMN), 5(5), 99–118.

    Article  Google Scholar 

  9. Hiltunen, K. (2012). Total power consumption of different network densification alternatives. In IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 1401–1405).

  10. Bhushan, N., Junyi, Li, Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., et al. (2014). Network densification: The dominant theme for wireless evolution into 5G. IEEE Communications Magazine, 52(2), 82–89.

    Article  Google Scholar 

  11. Johnson, C. (2012). Long term evolution in bullets (2nd ed.). Northampton: Johnson.

    Google Scholar 

  12. Holma, H., & Toskala, A. (2009). LTE for UMTS—OFDMA and SC-FDMA based radio access. Chippenham: Wiley.

    Google Scholar 

  13. Sheikh, M. U., Lempiäinen, J., & Ahnlund, H. (2013). Advanced antenna techniques and higher order sectorization with novel network tessellation for enhancing macro cell capacity in DC-HSDPA network. International Journal of Wireless and Mobile Networks, 5(5), 65–84.

    Article  Google Scholar 

  14. Laiho, J., Wacker, A., & Novosad, T. (2006). Radio network planning and optimization for UMTS (2nd ed.). Chichester: Wiley.

    Google Scholar 

  15. Itkonen, J., Tuzson, B.P., & Lempiäinen, J. (2006). Performance analysis of CDMA cellular networks based on alternative hexagonal network layouts. In IEEE 17th international symposium on personal, indoor and mobile radio communications, 2006 (pp. 1–5).

  16. 3GPP, E-UTRA and E-UTRAN Overall description: Stage 2 (Release 8), 3GPP TS 36.300 V8.0.0, Apr. 2007. Available September, 2014, http://www.3gpp.org.

  17. 3GPP, E-UTRA and E-UTRAN Overall description: Stage 2 (Release 10), 3GPP TS 36.300 V10.2.0, Dec. 2010. Available September, 2014, http://www.3gpp.org.

  18. 3GPP, E-UTRA and E-UTRAN Overall description: Stage 2 (Release 10), 3GPP TS 36.300 V11.3.0, Dec. 2012. Available September, 2014, http://www.3gpp.org.

  19. Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

    Article  Google Scholar 

  20. Zhang, X., & Haenggi, M. (2014). A stochastic geometry analysis of inter-cell interference coordination and intra-cell diversity. IEEE Transactions on Wireless Communications, 13(12), 6655–6669.

    Article  Google Scholar 

  21. Shannon, C. (1949). Communication in the presence of noise. Proceedings of the IRE, 37(1), 10–21.

    Article  Google Scholar 

  22. Alouni, M., & Goldsmith, A. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066.

    Article  Google Scholar 

  23. Yunas, S.F., Niemela, J., Valkama, M., & Isotalo, T. (2014). Techno-economical analysis and comparison of legacy and ultra-dense small cell networks. In IEEE 39th conference on local computer networks workshops (LCN workshops), 2014, (pp. 768-776), September, 8–11.

  24. Hossain, M.M.A., Koufus, K., & Janti, R. (2013). Energy efficient deployment of HetNets: Impact of power amplifier and delay. In Proceedings of the IEEE wireless communications and networking conference.

Download references

Acknowledgements

The authors would like to thank European Communications Engineering (ECE) Ltd and European Celtic-Plus project SHARING for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman Sheikh.

Appendix

Appendix

See Figs. 13, 14, 15, 16.

Fig. 13
figure 13

RSRP coverage plot for 3-sector site case, a 100 m ISD, b 125 m ISD, c 250 m ISD, d 375 m ISD, e 500 m ISD

Fig. 14
figure 14

RSRP coverage plot for 6-sector site case, a 100 m ISD, b 125 m ISD, c 250 m ISD, d 375 m ISD, e 500 m ISD

Fig. 15
figure 15

SINR plot for 3-sector site case, a 100 m ISD, b 125 m ISD, c 250 m ISD, d 375 m ISD, e 500 m ISD

Fig. 16
figure 16

SINR plot for 6-sector site case, a 100 m ISD, b 125 m ISD, c 250 m ISD, d 375 m ISD, e 500 m ISD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, M.U., Säe, J. & Lempiäinen, J. In preparation towards future cellular networks: the detailed analysis of macro and micro site densification and sector densification. Telecommun Syst 65, 621–636 (2017). https://doi.org/10.1007/s11235-016-0255-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0255-2

Keywords

Navigation