Skip to main content

Advertisement

Log in

Energy detector based TOA estimation for MMW systems using machine learning

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

60 GHz millimeter wave signals can provide precise time and multipath resolution and so have great potential for accurate time of arrival (TOA) and range estimation. To improve TOA estimation, a new energy detector based threshold selection algorithm which employs a neural network is proposed. The minimum slope, kurtosis, and skewness of the received energy block values are used to determine the normalized thresholds for different signal-to-noise ratios (SNRs). The effects of the channel and integration period are evaluated. Performance results are presented which show that the proposed approach provides better precision and is more robust than other solutions over a wide range of SNRs for the CM1.1 and CM2.1 channel models in the IEEE 802.15.3c standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, L., Zhou, C. Y., Wang, H. R., Wang, Y., Qian, H., & Yu, Z. P. (2014). A fully integrated 60 GHz four channel CMOS receiver with 7 GHz ultra-wide bandwidth for IEEE 802.11ad standard. China Communications, 11(6), 42–50.

    Article  Google Scholar 

  2. Leonor, N. R., Caldeirinha, R. F. S., Fernandes, T. R., & Garciá Sánchez, M. (2015). A simple model for average reradiation patterns of single trees based on weighted regression at 60 GHz. IEEE Transactions on Antennas and Propagation, 63(11), 5113–5118.

    Article  Google Scholar 

  3. Sakamoto, T., Okumura, S., Imanishi, R., Taki, H., Sato, T., Yoshioka, M., et al. (2015). Remote heartbeat monitoring from human soles using 60-GHz ultra-wideband radar. IEICE Electronics Express, 12, 21. doi:10.1587/elex.12.20150786.

    Google Scholar 

  4. Song, J., & Chin, K.-W. (2015). A survey of single and multi-hop link schedulers for mmWave wireless systems. Ad Hoc Networks, 33, 269–283.

    Article  Google Scholar 

  5. Ge, X., Yang, B., Ye, J., Mao, G., Wang, C.-X., & Han, T. (2015). Spatial spectrum and energy efficiency of random cellular networks. IEEE Transactions on Communications, 63(3), 1019–1030.

    Article  Google Scholar 

  6. Ge, X., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless backhaul networks: challenges and research advances. IEEE Network, 28(6), 6–11.

    Article  Google Scholar 

  7. Chahat, N., Valerio, G., Zhadobov, M., & Sauleau, R. (2013). On-body propagation at 60 GHz. IEEE Transactions on Antennas and Propagation, 61(4), 1876–1888.

    Article  Google Scholar 

  8. Zhu, Y., Tang, C., Song, L., Wu, S., & Biaz, S. (2015). Analytical and comparative investigation of 60 GHz wireless channels. Telecommunication Systems, 60(1), 179–186.

    Article  Google Scholar 

  9. Zhang, H., Cui, X. R., & Gulliver, T. A. (2011). Threshold selection for ultra-wideband TOA estimation based on skewness analysis (pp. 503–513)., Lecture Notes in Computer Science New York: Springer.

    Google Scholar 

  10. Guvenc, I., & Sahinoglu, Z. (2005). Threshold selection for UWB TOA estimation based on kurtosis analysis. IEEE Communications Letters, 9(12), 1025–1027.

    Article  Google Scholar 

  11. Guvenc, I.,&Sahinoglu, Z. (2005). Threshold selection for UWB TOA estimation based on kurtosis analysis, Proceedigs of IEEE International Conference on Ultra-Wideband, pp. 420–425.

  12. Zhang, H., Cui, X. R., & Gulliver, T. A. (2012). Remotely-sensed TOA interpretation of synthetic UWB based on neural networks. EURASIP Journal on Advances in Signal Processing. doi:10.1186/1687-6180-2012-185.

  13. Ahmadreza, J., Luca, P., Julien, S., David, L., Philippe, D. D., & Aziz, B. D. (2014). TDOA estimation method using 60 GHz OFDM spectrum. International Journal of Microwave and Wireless Technologies, 7(1), 31–35.

    Google Scholar 

  14. Hazra, R., & Tyagi, A. (2014). A survey on various coherent and non-coherent IR-UWB receivers. Wireless Personal Communications, 79(3), 2339–2369.

    Article  Google Scholar 

  15. Raja, M. A. Z., Shah, F. H., Khan, A. A., & Khan, N. A. (2016). Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson-Segalman fluid on vertical cylinder for drainage problems. Journal of the Taiwan Institute of Chemical Engineers, 60, 59–75.

    Article  Google Scholar 

  16. Zin, A. A. M., Saini, M., Mustafa, M. W., & Sultan, A. R. (2015). New algorithm for detection and fault classification on parallel transmission line using DWT and BPNN based on Clarke’s transformation. Neurocomputing, 168, 983–993.

    Article  Google Scholar 

  17. Di Benedetto, M. G., & Vojic, B. R. (2003). Ultra-wide band wireless communications: A tutorial. Journal of Communications and Networks, 5(4), 290–302.

    Article  Google Scholar 

  18. Niranjayan, S., & Beaulieu, N. C. (2013). Novel adaptive nonlinear receivers for UWB multiple access communications. IEEE Transactions on Wireless Communications, 12(5), 2014–2023.

    Article  Google Scholar 

  19. Li, P. X., Chen, H. W., Chen, M. H., & Xie, S. Z. (2011). Beyond 2.5 Gb/s photonic generation and wireless transmission of different pulse modulation formats for a high speed impulse radio UWB over fiber system. In Proceedins of Optical Fiber Communication Conference, pp. 1–3.

  20. Xiong, H. L., Zhang, W. S., Du, Z. F., He, B., & Yuan, D. F. (2013). Front-end narrowband interference mitigation for DS-UWB receiver. IEEE Transactions on Wireless Communications, 12(9), 4328–4337.

    Article  Google Scholar 

  21. Kalansuriya, P., Karmakar, N. C., & Viterbo, E. (2012). On the detection of frequency-spectra-based chipless RFID using UWB impulsed interrogation. IEEE Transactions on Microwave Theory and Techniques, 60(12), 4187–4197.

    Article  Google Scholar 

  22. Lee, X. R., Chen, C. L., Chang, H. C., & Lee, Y. (2015). A 7.92 Gb/s 437.2 mW stochastic LDPC decoder chip for IEEE 802.15.3c applications. IEEE Transactions on Circuits and Systems I, 62(2), 507–516.

    Article  Google Scholar 

  23. Liu, W. C., Wei, T. C., Huang, Y. S., Chan, C. D., & Jou, S. J. (2015). All-digital synchronization for SC/OFDM mode of IEEE 802.15.3c and IEEE 802.11ad. IEEE Transactions on Circuits and Systems I, 62(2), 545–553.

    Article  Google Scholar 

  24. Kim, J., Mohaisen, A., & Kim, J. K. (2014). Fast and low-power link setup for IEEE 802.15.3c multi-gigabit/s wireless sensor networks. IEEE Communications Letters, 18(3), 455–458.

    Article  Google Scholar 

  25. Zhang, H., Lu, T., & Gulliver, T. A. (2013). Pulse waveforms for 60 GHZ M-ary pulse position modulation communication systems. IET Communications, 7(2), 169–179.

    Article  Google Scholar 

  26. Lv, T. T. (2013). Research on Key Techniques and Applications of Broadband Impulse Radio Communications, Ph.D. Dissertation, Ocean University of China, Qingdao.

  27. Harada, H., Funada, R., Sawada, H., & Kato, S. (2007). TG3c Channel Modeling Sub-committee Final Report, IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs). http://www.doc88.com/p-519930503433.html, Accessed Mar 2016.

  28. Camastra, F., & Vinciarelli, A. (2015). Machine learning for audio, image and video analysis: Theory and applications (2nd ed.). London: Springer.

    Book  Google Scholar 

  29. Vicen-Bueno, R., Carrasco-Alvarez, R., Rosa-Zurera, M., Nieto-Borge, J. C., & Jarabo-Amores, M. P. (2010). Artificial neural network-based clutter reduction systems for ship size estimation in maritime radars. EURASIP Journal on Advances in Signal Processing, 2010, 9. doi:10.1155/2010/380473.

    Article  Google Scholar 

  30. Min, T., Chen, X., Sun, Y., & Huang, Q. (2014). A numerical approach to solving an inverse heat conduction problem using the Levenberg–Marquardt algorithm. Mathematical Problems in Engineering. doi:10.1155/2014/626037.

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of China under Grant No. 41527901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Liang.

Appendix

Appendix

In order to make the readers easy to read and understand the paper, Table 4 shows the full form of these indigestible abbreviations.

Table 4 Full form of the abbreviations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Zhang, H., Lu, T. et al. Energy detector based TOA estimation for MMW systems using machine learning. Telecommun Syst 64, 417–427 (2017). https://doi.org/10.1007/s11235-016-0182-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0182-2

Keywords

Navigation