Skip to main content

Advertisement

Log in

RDTP: reliable data transport protocol in wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The paper deals with a new reliable data transport protocol for wireless sensor networks, referred as RDTP. One of the most prominent challenges in wireless sensor networks is reliable transport of data from sensor nodes to sink node. For designing protocols for such networks hardware, some constraining factors associated with energy and processing power must be taken into consideration. There are two generic methods, ARQ and FEC to achieve reliable data transport. Here, a reliable data transport protocol for wireless sensor networks is proposed, in which an efficient moduli set in redundant residue number system has been employed. The modulus set is exploited as a means for adding redundancy to transmitted data. Error controlling in proposed method is performed in a hop by hop manner. The simulation results indicate that the proposed method shows significant decreases in the energy consumption, compared to similar methods. The results also show that this leads to a rise in packet delivery ratio, with a simultaneous reduction in end to end delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahmood, M. A., Seah, W. K., & Welch, I. (2015). Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks, 79, 166–187.

    Article  Google Scholar 

  2. Fortino, G., Bal, M., Li, W., & Shen, W. (2015). Collaborative wireless sensor networks: Architectures, algorithms and applications. Information Fusion, 22, 1–2.

    Article  Google Scholar 

  3. Hammoudeh, M., & Newman, R. (2015). Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. Information Fusion, 22, 3–15.

    Article  Google Scholar 

  4. Mitra, S., & Roy, A. (2015). Communication void free routing protocol in wireless sensor network. Wireless Personal Communications, 82(4), 2567–2581.

    Article  Google Scholar 

  5. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.

    Article  Google Scholar 

  6. Somasundara, A., Kansal, A., Jea, D. D., Estrin, D., & Srivastava, M. B. (2006). Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing, 5(8), 958–973.

    Article  Google Scholar 

  7. Shah, K., Di Francesco, M., Anastasi, G., & Kumar, M. (2011). A framework for resource-aware data accumulation in sparse wireless sensor networks. Computer Communications, 34(17), 2094–2103.

    Article  Google Scholar 

  8. Vuran, M. C., & Akyildiz, I. F. (2009). Error control in wireless sensor networks: a cross layer analy-sis. IEEE/ACM Transactions on Networking, 17(4), 1186–1199.

    Article  Google Scholar 

  9. Xie, P., Zhou, Z., Peng, Z., Cui, J. H., & Shi, Z. (2010). SDRT: A reliable data transport protocol for underwater sensor networks. Ad Hoc Networks, 8(7), 708–722.

    Article  Google Scholar 

  10. Iyer, Y. G., Gandham, S., & Venkatesan, S. (2005, October). STCP: A generic transport layer protocol for wireless sensor networks. In Proceedings of the 14th international conference on computer communications and networks (pp. 449-454), ICCCN 2005. New York: IEEE Press.

  11. Marchi, B., Grilo, A., & Nunes, M. (2007, July). DTSN: Distributed transport for sensor networks. In 12th IEEE symposium on computers and communications (pp. 165–172), ISCC 2007.

  12. Wan, C. Y., Campbell, A. T., & Krishnamurthy, L. (2005). Pump-slowly, fetch-quickly (PSFQ): A reliable transport protocol for sensor networks. IEEE Journal on Selected Areas in Communications, 23(4), 862–872.

    Article  Google Scholar 

  13. Mahmood, M. A., & Seah, W. K. (2012). Reliability in wireless sensor networks: Survey and challenges ahead. Wellington: School of Engineering and Computer Science, Victoria University of Wellington.

    Google Scholar 

  14. Srouji, M. S., Wang, Z., & Henkel, J. (2011, December). RDTS: A reliable erasure-coding based data transfer scheme for wireless sensor networks. In 2011 IEEE 17th international conference on parallel and distributed systems (ICPADS) (pp. 481–488).

  15. Stann, F., & Heidemann, J. (2003, May). RMST: Reliable data transport in sensor networks. In Proceedings of the first IEEE international workshop onsensor network protocols and applications (pp. 102–112). IEEE.

  16. Park, S. J., Sivakumar, R., Akyildiz, I. F., & Vedantham, R. (2008). GARUDA: Achieving effective reliability for downstream communication in wireless sensor networks. IEEE Transactions on Mobile Computing, 7(2), 214–230.

    Article  Google Scholar 

  17. Wu, C., Ji, Y., Xu, J., Ohzahata, S., & Kato, T. (2014). Coded packets over lossy links: A redundancy-based mechanism for reliable and fast data collection in sensor networks. Computer Networks, 70, 179–191.

    Article  Google Scholar 

  18. Hosseinzadeh, M., Molahosseini, A. S., & Navi, K. (2008). An improved reverse converter for the moduli set \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\}\). IEICE Electronics Express, 5(17), 672–677.

    Article  Google Scholar 

  19. Garner, H. L. (1959). The residue number system. IRE Transactions on Electronic Computers, 2, 140–147.

    Article  Google Scholar 

  20. Navi, K., Molahosseini, A. S., & Esmaeildoust, M. (2011). How to teach residue number system to computer scientists and engineers. IEEE Transactions on Education, 54(1), 156–163.

    Article  Google Scholar 

  21. Conway, R., & Nelson, J. (2004). Improved RNS FIR filter architectures. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(1), 26–28.

    Article  Google Scholar 

  22. Bajard, J. C., & Imbert, L. (2004). A full implementation RSA in RNS. IEEE Transactions on Computers, 53(6), 769–774.

    Article  Google Scholar 

  23. Ramrez, J., Garca, A., Meyer-Baese, U., & Lloris, A. (2002). Fast RNS FPL-based communications receiver design and implementation. In Field-programmable logic and applications: Reconfigurable computing is going mainstream (pp. 472–481). Berlin: Springer Heidelberg.

  24. Taylor, F. J. (1984). Residue arithmetic: A tutorial with examples. Computer, 17(5), 50–62.

    Article  Google Scholar 

  25. Sengupta, A., & Natarajan, B. (2014). Redundant residue number system based space-time block codes. Physical Communication, 12, 1–15.

    Article  Google Scholar 

  26. Barsi, F., & Maestrini, P. (1973). Error correcting properties of redundant residue number systems. IEEE Transactions on Computers, 100(3), 307–315.

    Article  Google Scholar 

  27. Kinoshita, E., & Lee, K. J. (1997). A residue arithmetic extension for reliable scientific computation. IEEE Transactions on Computers, 46(2), 129–138.

    Article  Google Scholar 

  28. Haron, N. Z., & Hamdioui, S. (2011). Redundant residue number system code for fault-tolerant hybrid memories. ACM Journal on Emerging Technologies in Computing Systems (JETC), 7(1), 4.

    Google Scholar 

  29. Matutino, P. M., Chaves, R., & Sousa, L. (2014). An efficient scalable RNS architecture for large dynamic ranges. Journal of Signal Processing Systems, 77(1–2), 191–205.

  30. Modiri, S., Movaghar, A., & Barati, A. (2012). Study of error control capability for the new moduli set \(\{2^{2n+1}+2^n-1, 2^{2n+1}-1, 2^n-1, 2^{2n}, 2^{2n+1}-1\}\). Journal of Advanced Computer Science & Technology, 1(4), 176–186.

    Article  Google Scholar 

  31. Modiri, S., Movaghar, A., & Barati, A. (2012). An efficient reverse converter for the new modulus set \(\{2^{2n+2}1, 2^{2n+1}1,2^n \}\). International Journal of Advanced Research in Computer Science and Software Engineering, 2(8), 447–452.

    Google Scholar 

  32. Piestrak, S. J. (1995). A high speed realization of a residue to binary converter. IEEE Transactions on circuits and systems. II, Analogue and digital Signal Processing, 42(10), 661–663.

    Google Scholar 

  33. Molahosseini, A. S., Navi, K., Dadkhah, C., Kavehei, O., & Timarchi, S. (2010). Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4), 823–835.

    Article  Google Scholar 

  34. Wang, W., Swamy, M. N. S., Ahmad, M. O., & Wang, Y. (2000). A high-speed residue-to-binary converter for three-moduli (\(2^k, 2^{k-1}, 2^{k-1}-1\)) RNS and a scheme for its VLSI implementation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(12), 1576–1581.

    Article  Google Scholar 

  35. Mohan, P. A., & Premkumar, A. B. (2007). RNS-to-binary converters for two four-moduli sets \( \{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\} \) and \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}+1 \}\). IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1245–1254.

    Article  Google Scholar 

  36. Sheu, M. H., Lin, S. H., Chen, C., & Yang, S. W. (2004). An efficient VLSI design for a residue to binary converter for general balance moduli \(\{2^n-3, 2^n-1, 2^n+1, 2^n+3\}\). IEEE Transactions on Circuits and Systems II: Express Briefs, 51(3), 152–155.

    Article  Google Scholar 

  37. Cao, B., Srikanthan, T., & Chang, C. H. (2005). Efficient reverse converters for four-moduli sets \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\}\) and \( \{2^n-1, 2^n, 2^n+1, 2^{n-1}-1\} \). IEE Proceedings-Computers and Digital Techniques, 152(5), 687–696.

    Article  Google Scholar 

  38. Mohan, P. A. (2008). New reverse converters for the moduli set \(\{2^n-3, 2^n-1, 2^n+1, 2^n+3\}\). AEU-International Journal of Electronics and Communications, 62(9), 643–658.

    Article  Google Scholar 

  39. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications magazine, 40(8), 102–114.

    Article  Google Scholar 

  40. Network simulator (ns-2). http://www.isi.edu/nsnam/ns/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Barati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, A., Movaghar, A. & Sabaei, M. RDTP: reliable data transport protocol in wireless sensor networks. Telecommun Syst 62, 611–623 (2016). https://doi.org/10.1007/s11235-015-0098-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0098-2

Keywords

Navigation