Skip to main content
Log in

Reliability analysis of multilayer multistage interconnection networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Multistage interconnection networks (MINs) play a key role in the performance of parallel computers and multiprocessor systems. A non-negligible demand on today’s modern systems is to deliver multicast traffic. Therefore, design of efficient MINs that meets the routing requirement is vital. One of the main ideas to cope with this problem is the use of replicated MINs. However, one of the major concerns about these networks is the problem of unnecessary layer replication in the first stages, which recently proposes a new idea called multilayer MINs. Previous analyzes demonstrated that this new idea could lead to cost-effective topologies that had a very close performance to the replicated MINs in terms of throughput. Also, these analyzes indicate that these networks outperform replicated MINs in terms of delay. However, another critical parameter to prove the performance of most systems is reliability. Therefore, in this paper, we will focus on two essential parameters of cost and reliability to achieve both objectives; first, evaluating the performance of multilayer MINs in terms of reliability, second, to find the best topology among the multilayer MINs introduced in previous works in terms of cost-effectiveness (mean time to failure/cost ratio).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. El-Rewini, H., & Abd-El-Barr, M. (2005). Advanced computer architecture and parallel processing. Hoboken: Wiley.

    Google Scholar 

  2. Duato, J., Yalamanchili, S., & Ni, L. M. (2003). Interconnection networks: An engineering approach. Burlington: Morgan Kaufmann.

    Google Scholar 

  3. Chan, K. S., et al. (2000). A refined model for performance analysis of output-buffered Banyan networks. Telecommunication Systems, 13.2–4, 393–411.

    Article  Google Scholar 

  4. Pattavina, A., & Catania, C. (2003). Performance analysis of ATM replicated banyan networks with external input-output queueing. Telecommunication Systems, 23(1–2), 149–170.

    Article  Google Scholar 

  5. Gu, H., et al. (2010). A new distributed congestion control mechanism for networks on chip. Telecommunication Systems, 44(3–4), 321–331.

    Article  Google Scholar 

  6. Suboh, S., et al. (2008). An interconnection architecture for network-on-chip systems. Telecommunication Systems, 37(1–3), 137–144.

    Article  Google Scholar 

  7. Agrawal, D. P., Chen, C., & Burke, J. R. (1998). Hybrid graph-based networks for multiprocessing. Telecommunication Systems, 10(1–2), 107–134.

    Article  Google Scholar 

  8. Bellaachia, A., & Youssef, A. (2000). Communication capabilities of product networks. Telecommunication Systems, 13(1), 119–133.

    Article  Google Scholar 

  9. Jahanshahi, M., & Bistouni, F. (2015). Improving the reliability of the Benes network for use in large-scale systems. Microelectronics Reliability, 55(3), 679–695.

    Article  Google Scholar 

  10. Diab, H., Tabbara, H., & Mansour, N. (2000). Simulation of dynamic input buffer space in multistage interconnection networks. Advances in Engineering Software, 31(1), 13–24.

    Article  Google Scholar 

  11. Jahanshahi, M., & Bistouni, F. (2014). A new approach to improve reliability of the multistage interconnection networks. Computers & Electrical Engineering, 40(8), 348–374.

    Article  Google Scholar 

  12. Veglis, A., & Pomportsis, A. (2001). Dependability evaluation of interconnection networks. Computers & Electrical Engineering, 27(3), 239–263.

    Article  Google Scholar 

  13. Bistouni, F., & Jahanshahi, M. (2015). Scalable crossbar network: A non-blocking interconnection network for large-scale systems. Journal of Supercomputing, 71(2), 697–728.

    Article  Google Scholar 

  14. Kolias, C., & Tomkos, I. (2005). Switch fabrics. IEEE Circuits and Devices Magazine, 21(5), 12–17.

    Article  Google Scholar 

  15. Bataineh, S. M., & Allosl, B. Y. (2001). Fault-tolerant multistage interconnection network. Telecommunication Systems, 17(4), 455–472.

    Article  Google Scholar 

  16. Ayyaz, M. N., Meliksetian, D. S., & Roger Chen, C. Y. (2000). Partitionable multistage interconnection networks. Part 2: Task migration schemes. Telecommunication Systems, 13(1), 45–67.

    Article  Google Scholar 

  17. Blake, J. T., & Trivedi, K. S. (1989). Reliability analysis of interconnection networks using hierarchical composition. IEEE Transactions on Reliability, 38(1), 111–120.

    Article  Google Scholar 

  18. Garofalakis, J., & Stergiou, E. (2010). Analytical model for performance evaluation of multilayer multistage interconnection networks servicing unicast and multicast traffic by partial multicast operation. Performance Evaluation, 67(10), 959–976.

    Article  Google Scholar 

  19. Vasiliadis, D. C., Rizos, G. E., & Vassilakis, C. (2013). Modelling and performance study of finite-buffered blocking multistage interconnection networks supporting natively 2-class priority routing traffic. Journal of Network and Computer Applications, 36(2), 723–737.

    Article  Google Scholar 

  20. Bistouni, F., & Jahanshahi, M. (2014). Improved extra group network: A new fault-tolerant multistage interconnection network. Journal of Supercomputing, 69(1), 161–199.

    Article  Google Scholar 

  21. Mahgoub, I., & Huang, C. J. (1998). A novel scheme to improve fault-tolerant capabilities of multistage interconnection networks. Telecommunication Systems, 10(1–2), 45–66.

    Article  Google Scholar 

  22. Stergiou, E., & Garofalakis, J. (2012). Performance estimation of banyan semi layer networks with drop resolution mechanism. Journal of Network and Computer Applications, 35(1), 287–294.

    Article  Google Scholar 

  23. Garhwal, S., & Srivastava, N. (2011). Designing a fault-tolerant fully-chained combining switches multi-stage interconnection network with disjoint paths. Journal of Supercomputing, 55.3, 400–431.

    Google Scholar 

  24. Rajkumar, S., & Goyal, N. K. (2014). Design of 4-disjoint gamma interconnection network layouts and reliability analysis of gamma interconnection networks. Journal of Supercomputing, 69(1), 468–491.

    Article  Google Scholar 

  25. Ferreira, R. S., et al. (2011). Fast placement and routing by extending coarse-grained reconfigurable arrays with Omega Networks. Journal of Systems Architecture, 57(8), 761–777.

    Article  Google Scholar 

  26. Zhang, Y.-H., et al. (2014). A method of batching conflict routings in shuffle-exchange networks. Theoretical Computer Science, 522, 24–33.

    Article  Google Scholar 

  27. Jaros, J (2009). Evolutionary optimization of multistage interconnection networks performance. In Proceedings of the GECCO Vol. 9.

  28. Blake, J.T., & Trivedi, K.S. (1988). Reliability of the shuffle-exchange network and its variants. In Proceedings of the twenty-first annual hawaii international conference on system sciences, Architecture Track (Vol. 1). IEEE.

  29. Tutsch, D., & Hommel, G. (2008). MLMIN: A multicore processor and parallel computer network topology for multicast. Computers & Operations Research, 35(12), 3807–3821.

    Article  Google Scholar 

  30. Garofalakis, J., & Stergiou, E. (2011). Mechanisms and analysis for supporting multicast traffic by using multilayer multistage interconnection networks. International Journal of Network Management, 21(2), 130–146.

    Article  Google Scholar 

  31. Bistouni, F., & Jahanshahi, M. (2014). Analyzing the reliability of shuffle-exchange networks using reliability block diagrams. Reliability Engineering & System Safety, 132, 97–106.

    Article  Google Scholar 

  32. Barranco, M., Proenza, J., & Almeida, L. (2015). Quantitative characterization of the reliability of simplex buses and stars to compare their benefits in fieldbuses. Reliability Engineering & System Safety, 138, 163–175. doi:10.1016/j.ress.2015.01.005.

    Article  Google Scholar 

  33. Bistouni, F., & Jahanshahi, M. (2015). Pars network: A multistage interconnection network with fault-tolerance capability. Journal of Parallel and Distributed Computing, 75, 168–183.

    Article  Google Scholar 

  34. Bansal, P. K., Joshi, R. C., & Singh, K. (1994). On a fault-tolerant multistage interconnection network. Computers & electrical engineering, 20(4), 335–345.

    Article  Google Scholar 

  35. Rai, S., & Oh, Y. C. (1999). Tighter bounds on full access probability in fault-tolerant multistage interconnection networks. IEEE Transactions on Parallel and Distributed Systems, 10(3), 328–335.

    Article  Google Scholar 

  36. Blake, J. T., & Trivedi, K. S. (1989). Multistage interconnection network reliability. IEEE Transactions on Computers, 38(11), 1600–1604.

    Article  Google Scholar 

  37. Gunawan, I. (2008). Redundant paths and reliability bounds in gamma networks. Applied Mathematical Modelling, 32(4), 588–594.

    Article  Google Scholar 

  38. Cheng, X., & Ibe, O. C. (1992). Reliability of a class of multistage interconnection networks. IEEE Transactions on Parallel and Distributed Systems, 3(2), 241–246.

    Article  Google Scholar 

  39. Bauer, E. (2010). Design for reliability: Information and computer-based systems. Hoboken: Wiley.

    Book  Google Scholar 

  40. Kang, W.-H., & Kliese, A. (2014). A rapid reliability estimation method for directed acyclic lifeline networks with statistically dependent components. Reliability Engineering & System Safety, 124, 81–91.

    Article  Google Scholar 

  41. Hong, L., et al. (2015). Vulnerability assessment and mitigation for the Chinese railway system under floods. Reliability Engineering & System Safety, 137, 58–68.

    Article  Google Scholar 

  42. Padmavathy, N., & Chaturvedi, S. K. (2013). Evaluation of mobile ad hoc network reliability using propagation-based link reliability model. Reliability Engineering & System Safety, 115, 1–9.

    Article  Google Scholar 

  43. Shuang, Q., Zhang, M., & Yuan, Y. (2014). Node vulnerability of water distribution networks under cascading failures. Reliability Engineering & System Safety, 124, 132–141.

    Article  Google Scholar 

  44. Lee, A., & Ra, I. (2015). Network resource efficient routing in mobile ad hoc wireless networks. Telecommunication Systems, 60(2), 215–223.

  45. Nayebi, A., & Sarbazi-Azad, H. (2013). Optimum hello interval for a connected homogeneous topology in mobile wireless sensor networks. Telecommunication Systems, 52(4), 2475–2488.

    Article  Google Scholar 

  46. Jahanshahi, M., Dehghan, M., & Meybodi, M. R. (2013). LAMR: Learning automata based multicast routing protocol for multi-channel multi-radio wireless mesh networks. Applied Intelligence, 38(1), 58–77.

    Article  Google Scholar 

  47. Jahanshahi, M., Dehghan, M., & Meybodi, M. R. (2013). On channel assignment and multicast routing in multi-channel multi-radio wireless mesh networks. International Journal of Ad Hoc and Ubiquitous Computing, 12(4), 225–244.

    Article  Google Scholar 

  48. Rak, J. (2015). A new approach to design of weather disruption-tolerant wireless mesh networks. Telecommunication Systems. doi:10.1007/s11235-015-0003-z.

  49. Jahanshahi, M., Dehghan, M., & Meybodi, M. R. (2011). A mathematical formulation for joint channel assignment and multicast routing in multi-channel multi-radio wireless mesh networks. Journal of Network and Computer Applications, 34(6), 1869–1882.

    Article  Google Scholar 

  50. Jahanshahi, M., & Barmi, A. T. (2014). Multicast routing protocols in wireless mesh networks: A survey. Computing, 96(11), 1029–1057.

    Article  Google Scholar 

  51. Jahanshahi, M., Maddah, M., & Najafizadegan, N. (2013). Energy aware distributed partitioning detection and connectivity restoration algorithm in wireless sensor networks. International Journal of Mathematical Modelling & Computations, 3.1, 71–82.

    Google Scholar 

  52. Liu, X., Zhang, S., & Bu, K. (2015). A locality-based range-free localization algorithm for anisotropic wireless sensor networks. Telecommunication Systems. doi:10.1007/s11235-015-9978-8.

  53. Guerroumi, M., Badache, N., & Moussaoui, S. (2015). Mobile sink and power management for efficient data dissemination in wireless sensor networks. Telecommunication Systems, 58(4), 279–292.

    Article  Google Scholar 

  54. Jahanshahi, M., Rahmani, S., & Ghaderi, S. (2013). An efficient cluster head selection algorithm for wireless sensor networks using fuzzy inference systems. The International Journal of Smart Electrical Engineering (IJSEE), 2.2, 121–125.

    Google Scholar 

  55. Ebrahimi, N., McCullough, K., & Xiao, Z. (2013). Reliability of sensors based on nanowire networks operating in a dynamic environment. IEEE Transactions on Reliability, 62(4), 908–916.

    Article  Google Scholar 

  56. Schneider, K., et al. (2013). Social network analysis via multi-state reliability and conditional influence models. Reliability Engineering & System Safety, 109, 99–109.

    Article  Google Scholar 

  57. Lin, Y.-K., & Chang, P.-C. (2013). A novel reliability evaluation technique for stochastic-flow manufacturing networks with multiple production lines. IEEE Transactions on Reliability, 62(1), 92–104.

  58. Chang, N.-W., et al. (2015). Conditional diagnosability of (n, k)-star networks under the comparison diagnosis model. IEEE Transactions on Reliability, 64(1), 132–143.

  59. Arzilawati Md Yunus, N., & Othman, M. (2014). Reliability evaluation and routing integration in shuffle exchange omega network. Journal of Networks, 9(7), 1732–1737.

    Article  Google Scholar 

  60. Yunus, N. A. M., & Othman, M. (2015). Empirical analysis of terminal reliability in multistage interconnection networks. In Computational Intelligence and Efficiency in Engineering Systems (pp. 157–169). Springer International Publishing.

  61. Zhu, Q., Wang, X.-K., & Cheng, G. (2013). Reliability evaluation of BC networks. IEEE Transactions on Computers, 62(11), 2337–2340.

    Article  Google Scholar 

  62. Abd-El-Barr, M., & Gebali, F. (2014). Reliability analysis and fault tolerance for hypercube multi-computer networks. Information Sciences, 276, 295–318.

    Article  Google Scholar 

  63. Rajkumar, S., & Goyal, N. K. (2015). Reliable multistage interconnection network design. Peer-to-Peer Networking and Applications. doi:10.1007/s12083-015-0368-5.

  64. Sangeetha, R. G., Chandra, V., & Chadha, D. (2014). Bidirectional data vortex optical interconnection network: BER performance by hardware simulation and evaluation of terminal reliability. Journal of Lightwave Technology, 32(19), 3266–3276.

    Article  Google Scholar 

  65. Dash, R. K., et al. (2012). Network reliability optimization problem of interconnection network under node-edge failure model. Applied Soft Computing, 12(8), 2322–2328.

    Article  Google Scholar 

  66. Tripathy, P. K., Dash, R. K., & Tripathy, C. R. (2015). A dynamic programming approach for layout optimization of interconnection networks. Engineering Science and Technology, an International Journal, 18(3), 374–384.

  67. Bistouni, F., & Jahanshahi, M. (2015). Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution. Reliability Engineering & System Safety, 144, 128–146.

    Article  Google Scholar 

  68. Zhou, J.-X., et al. (2015). Symmetric property and reliability of balanced hypercube. IEEE Transactions on Computers, 64(3), 876–881.

    Article  Google Scholar 

  69. Shooman, M. L. (2002). Reliability of computer systems and networks: Fault tolerance, analysis, and design. New York: Wiley.

    Book  Google Scholar 

  70. Birolini, A. (2007). Reliability engineering: Theory and practice. Heidelberg: Springer.

    Google Scholar 

  71. Wei, S., & Lee, G. (1988). Extra group network: A cost-effective fault-tolerant multistage interconnection network. In ACM SIGARCH computer architecture news (Vol. 16, No. 2). IEEE Computer Society Press.

  72. Aljundi, A. C., et al. (2006). A universal performance factor for multi-criteria evaluation of multistage interconnection networks. Future Generation Computer Systems, 22(7), 794–804.

    Article  Google Scholar 

  73. Cuda, D., Giaccone, P., & Montalto, M. (2012). Design and control of next generation distribution frames. Computer Networks, 56(13), 3110–3122.

    Article  Google Scholar 

  74. Yang, Y., & Wang, J. (2005). A new design for wide-sense nonblocking multicast switching networks. IEEE Transactions on Communications, 53(3), 497–504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bistouni, F., Jahanshahi, M. Reliability analysis of multilayer multistage interconnection networks. Telecommun Syst 62, 529–551 (2016). https://doi.org/10.1007/s11235-015-0093-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0093-7

Keywords

Navigation