Skip to main content

Advertisement

Log in

Prolonging the lifetime of wireless sensor networks using secondary sink nodes

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This work proposes an approach for improving energy-efficiency and thus increasing network lifetime in wireless sensor network (WSN) using a logical energy tree (LET). In our scheme, LET is constructed using the remaining available energy in each node. Two routing algorithms are framed based on LET: one with centralized sink node called LETCSN and the other with centralized sink node and secondary sink nodes called LETSSN. sensor nodes are deployed in some fixed patterns. A mathematical model is devised to understand the effect of node deployment pattern on improving network lifetime. Both proposed routing algorithms are evaluated with seven different deployment patterns, simulated in ns-2 and are compared with the existing classic algorithms based on the number of data packets, throughput, network lifetime, and data packet’s average network lifetime product. Our evaluation and simulation results show that LETSSN maximizes the network lifetime for all node-deployment patterns taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The term ‘Data’ is considered plural. Singular is ‘Datum’.

  2. The terms ‘deployment’ and ‘distribution’ are used interchangeably throughout the work.

References

  1. Liu, X. (2012). A survey on clustering routing protocols in wireless sensor networks. Sensors (Basel)., 12(8), 11113–53. doi:10.3390/s120811113.

    Article  Google Scholar 

  2. Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.

    Article  Google Scholar 

  3. Alippi, C., Anastasi, G., Di Francesco, M., & Roveri, M. (2009). Energy management in wireless sensor networks with energy-hungry sensors. IEEE Instrumentation & Measurement Magazine, 12(2), 16–23.

    Article  Google Scholar 

  4. Nikolidakis, S. A., Kandris, D., Vergados, D. D., & Douligeris, C. (2013). Energy efficient routing in wireless sensor networks through balanced clustering. Algorithms, 6(1), 29–42. doi:10.3390/a6010029.

    Article  Google Scholar 

  5. Sen, F., Bing, Q., & Liangrui, T. (2011). An improved energy-efficient PEGASIS based protocol in wireless sensor networks. In 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Volume: 4, pp. 2230–2233.

  6. Pathan, A.-S. K., & Hong, C. S. (2008). SERP: Secure energy-efficient routing protocol for densely deployed wireless sensor networks. Annals of Telecommunications, 63, 529–541. doi:10.1007/s12243-008-0042-5.

    Article  Google Scholar 

  7. The Network Simulator—ns-2: http://www.isi.edu/nsnam/ns/.

  8. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(2), 551–591. Second Quarter.

    Article  Google Scholar 

  9. Li, C., Zhang, H., Hao, B., & Li, J. (2011). A survey on routing protocols for large-scale wireless sensor networks. Sensors, 11, 3498–3526. doi:10.3390/s110403498.

    Article  Google Scholar 

  10. Zin, S. M., Anuar, N. B., Kiah, M. L. M., & Pathan, A.-S. K. (2014). Routing protocol design for secure WSN: Review and open research issues. Journal of Network and Computer Applications, 41, 517–530. doi:10.1016/j.jnca.2014.02.008. Elsevier.

    Article  Google Scholar 

  11. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. doi:10.1109/HICSS.2000.926982.

  12. Koucheryavy, A., Salim, A., & Osamy, W. (2009). Enhanced LEACH protocol for wireless sensor networks. St. Petersburg University of Telecommunication. http://www.iot.sut.ru/09.pdf. Last accessed 6 May 2014.

  13. Li, B., & Zhang, X. (2012). Research and improvement of LEACH protocol for wireless sensor network. In International Conference on Information Engineering, Lecture Notes in Information Technology, vol. 25.

  14. Iqbal, A., Akbar, M., Javaid, N., Bouk, S. H., Ilahi, M., & Khan, R. D. (2013). Advanced LEACH: A static clustering-based heteroneous routing protocol for WSNs. Journal of Basic Appllied Science and Research, 3(5), 864–872.

    Google Scholar 

  15. Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications, 29(12), 2230–2237.

    Article  Google Scholar 

  16. Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. IEEE Aerospace Conference Proceedings, 3, 1125–1130.

    Google Scholar 

  17. Lindsey, S., Raghavendra, C. S., & Sivalingam, K. (2000). Data gathering in sensor networks using the energy*delay metric. In Proceedings 15th International Parallel and Distributed Processing Symposium., 23–27, San Francisco, CA, USA, pp. 2001–2008.

  18. Manjeshwar, A., & Agrawal, D. P. (2000). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In Proceedings 15th International Parallel and Distributed Processing Symposium., 23–27, San Francisco, CA, USA, pp. 2009–2015.

  19. Xu, Z., Yin, Y., Wang, J., & Kim, J.-U. (2012). An energy-efficient multi-sink clustering algorithm for wireless sensor networks. International Journal of Control and Automation, 5(4), 131–142.

    Google Scholar 

  20. Huang, Z., Cheng, Y., & Liu, W. (2011). A Novel energy-efficient routing algorithm in multi-sink wireless sensor networks. In 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 16–18 Nov. pp. 1646–1651.

  21. Carels, D., Derdaele, N., Poorter, E. D., Vandenberghe, W., Moerman, I., & Demeester, P. (2014). Support of multiple sinks via a virtual root for the RPL routing protocol. EURASIP Journal on Wireless Communications and Networking, 2014, 91. doi:10.1186/1687-1499-2014-91.

    Article  Google Scholar 

  22. Natalizio, E., Loscri, V., & Viterbo, E. (2008). Optimal placement of wireless nodes for maximizing path lifetime. IEEE Communications Letters, 12(5), 362–364.

    Article  Google Scholar 

  23. Lim, J. C., & Bleakley, C. (2012). Adaptive WSN scheduling for lifetime extension in environmental monitoring applications. International Journal of Distributed Sensor Networks, 2012. Article ID 286981, p. 17. doi:10.1155/2012/286981.

  24. Li, Q.-Q., Gong, H., Liu, M., Yang, M., & Zheng, J. (2011). On prolonging network lifetime through load-similar node deployment in wireless sensor networks. Sensors (Basel), 11(4), 3527–3544. doi:10.3390/s110403527.

    Article  Google Scholar 

  25. Li, J., & AlRegib, G. (2009). Network lifetime maximization for estimation in multihop wireless sensor networks. IEEE Transactions on Signal Processing, 57(7), 2456–2466.

    Article  Google Scholar 

  26. Sullivan III, M. (2010). Fundamentals of statistics. 3rd Edn, Sullivan Statistics Series, Pearson, ISBN-13: 978-0321641878, Jan 13.

  27. Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14887–14913. doi:10.3390/s121114887.

    Article  Google Scholar 

  28. Slama, I., Jouaber, B., & Zeghlache, D. (2010). Topology control and routing in large scale wireless sensor networks. Wireless Sensor Network, Scientific Research, 2, 584–598.

    Article  Google Scholar 

  29. Das, D., Rehena, Z., Roy, S., & Mukherjee, N. (2013). Multiple-sink placement strategies in wireless sensor networks. In 2013 Fifth International Conference on Communication Systems and Networks (COMSNETS), pp. 1–7.

  30. Oyman, E. I., & Ersoy, C. (2004) Multiple sink network design problem in large scale wireless sensor networks. In 2004 IEEE International Conference on Communications, vol 6, 20–24 June, pp. 3663–3667.

  31. Lecture handout on graph theory. http://www.cs.cmu.edu/afs/cs/academic/class/15251/Site/current/Materials/Handouts/lecture20-proofs.pdf. Last accessed 9 May 2014.

  32. Radi, M., Dezfouli, B., Bakar, K. A., & Razak, S. A. Integration and analysis of neighbor discovery and link quality estimation in wireless sensor networks. The Scientific World Journal, 2014, 23. (Article ID 789642)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Murugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, K., Pathan, AS.K. Prolonging the lifetime of wireless sensor networks using secondary sink nodes. Telecommun Syst 62, 347–361 (2016). https://doi.org/10.1007/s11235-015-0079-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0079-5

Keywords

Navigation