Skip to main content
Log in

Quantum versus classical uncertainty

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The uncertainty of an observable in a quantum state is usually described by variance. This description is well suited when the states are pure. But when the states are mixed, things become subtle, and the variance is a hybrid of quantum and classical uncertainties. Motivated by the notion of Fisher information in statistical inference, we establish a decomposition of the variance into quantum and classical parts. The key observation is that the Wigner-Yanase skew information (a distinguished version of quantum Fisher information) can be interpreted as a measure of quantum uncertainty. We also establish a decomposition of the conventional covariance into quantum and classical parts. The results provide a new perspective for understanding uncertainty and correlation and are used to quantify entanglement, as well as to establish a new uncertainty relation in purely quantum terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. F. Werner, Phys. Rev. A, 40, 4277 (1989); S. Popescu, Phys. Rev. Lett., 72, 797 (1994); 74, 2619 (1995); M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A, 200, 340 (1995); Phys. Rev. Lett., 80, 5239 (1998); N. Gisin, Phys. Lett. A, 210, 151 (1996); H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, Phys. Rev. Lett., 76, 2818 (1996); C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A, 54, 3824 (1996).

    Article  PubMed  Google Scholar 

  2. V. Vedral, M. B. Pleni, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 78, 2275 (1997); V. Vedral and M. B. Plenio, Phys. Rev. A, 57, 1619 (1998); G. Vidal, J. Modern Opt., 47, 355 (2000); G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002); M. Horodecki, Quantum Inf. Comput., 1, No. 1, 3 (2001); W. K. Wootters, Quantum Inf. Comput., 1, No. 1, 27 (2001); R. F. Werner and M. M. Wolf, Quantum Inf. Comput., 1, No. 3, 1 (2001).

    Article  CAS  Google Scholar 

  3. L. Henderson, N. Linden, and S. Popescu, Phys. Rev. Lett., 87, 237901 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton Univ. Press, Princeton, N. J. (1944); R. D. Luice and H. Raiffa, Games and Decisions, Wiley, New York (1957).

    Google Scholar 

  5. J. Summhammer, Found. Phys. Lett., 1, 113 (1988); Internat. J. Theor. Phys., 33, 171 (1994).

    Article  Google Scholar 

  6. A. Peres, Quantum Theory: Concepts and Methods, Kluwer, Dordrecht (1993); C. M. Caves, C. A. Fuchs, and R. Schack, Phys. Rev. A, 65, 022305 (2002); C. A. Fuchs, J. Modern Opt., 50, 987 (2003); B. R. Frieden, Physics from Fisher Information: A Unification, Camb. Univ. Press, Cambridge (1998).

    Google Scholar 

  7. A. M. Gleason, J. Math. Mech., 6, 885 (1957); P. Busch, Phys. Rev. Lett., 91 120403 (2003).

    Google Scholar 

  8. N. D. Mermin, Pramana, 51, 549 (1998); quant-ph/9609013 (1996); Am. J. Phys., 66, 753 (1998).

    CAS  Google Scholar 

  9. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2000).

    Google Scholar 

  10. L. Henderson and V. Vedral, J. Phys. A, 34, 6899 (2001); Phys. Rev. Lett., 84, 2263 (2000); V. Vedral, Phys. Rev. Lett., 90, 050401 (2003); H. Ollivier and W. H. Zurek, Phys. Rev. Lett., 88, 017901 (2002); W. H. Zurek, Phys. Rev. A, 67, 012320 (2003).

    Google Scholar 

  11. R. A. Fisher, Proc. Camb. Philos. Soc., 22, 700 (1925).

    Google Scholar 

  12. S. L. Luo, Phys. Rev. Lett., 91, 180403 (2003).

    Article  PubMed  Google Scholar 

  13. E. P. Wigner and M. M. Yanase, Proc. Nat. Acad. Sci. USA, 49, 910 (1963).

    Google Scholar 

  14. E. P. Wigner, Z. Phys., 133, 101 (1952); H. Araki and M. M. Yanase, Phys. Rev., 120, 622 (1960); M. M. Yanase, Phys. Rev., 123, 666 (1961).

    Google Scholar 

  15. E. H. Lieb, Adv. Math., 11, 267 (1973); A. Wehrl, Rev. Modern Phys., 50 221 (1978).

  16. E. Schrödinger, Sitzungsber. Preuss. Acad. Wiss. Berlin (Phys. Math.), 19, 296 (1930); A. Angelow and M.-C. Batoni, transl. and annot., “About Heisenberg uncertainty relation (by E. Schrö dinger),” quant-ph/9903100 (1999).

    Google Scholar 

  17. J. A. Wheeler, “Information, physics, quantum: the search for links,” in: Complexity, Entropy, and Physics of Information (W. H. Zurek, ed.), Addison-Wesley, Reading, Mass. (1990), p. 3.

    Google Scholar 

  18. A. Zeilinger, Found. Phys., 29, 631 (1999).

    Article  Google Scholar 

  19. S. L. Luo, Found. Phys., 32, 1757 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 143, No. 2, pp. 231–240, May, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S.L. Quantum versus classical uncertainty. Theor Math Phys 143, 681–688 (2005). https://doi.org/10.1007/s11232-005-0098-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-005-0098-6

Keywords

Navigation