Skip to main content
Log in

Molecular characterisation of four echinostomes (Digenea: Echinostomatidae) from birds in New Zealand, with descriptions of Echinostoma novaezealandense n. sp. and Echinoparyphium poulini n. sp.

  • Published:
Systematic Parasitology Aims and scope Submit manuscript

Abstract

Morphological and molecular characterisation of echinostome specimens (Digenea: Echinostomatidae) recovered in one Anas platyrhynchos L. and one Cygnus atratus (Latham) (Anseriformes: Anatidae) from New Zealand revealed the presence of two known species, Echinostoma miyagawai Ishii, 1932 and Echinoparyphium ellisi (Johnston & Simpson, 1944) and two species new to science. Comparative morphological and phylogenetic analyses supported the distinct species status of Echinostoma novaezealandense n. sp. ex Branta canadensis (L.), A. platyrhynchos and C. atratus, and Echinoparyphium poulini n. sp. ex C. atratus. Echinostoma novaezealandense n. sp., a species of the “revolutum” species complex characterised by the possession of a head collar armed with 37 spines, keyed down to E. revolutum but was distinguished from the latter in having a much narrower body with almost parallel margins, longer oesophagus, wider cirrus-sac, larger seminal vesicle, much smaller ventral sucker, ovary, Mehlis’ gland and testes, more anteriorly located ovary and testes, and distinctly smaller eggs (81–87 × 42–53 vs 106–136 × 55–70 µm). This new species appears similar to Echinostoma acuticauda Nicoll, 1914 described in Australia but differs in having a longer forebody, more posteriorly located ovary and testes, and much smaller eggs (81–87 × 42–53 vs 112–126 × 63–75 µm). Echinoparyphium poulini n. sp. is differentiated from the four species of Echinoparyphium possessing 37 collar spines considered valid as follows: from E. chinensis Ku, Li & Chu, 1964 in having a much smaller body, four (vs five) angle spines and simple seminal vesicle (vs bipartite); from E. schulzi Matevosyan, 1951 in having a less robust body at a comparable body length, much smaller ventral sucker, ovary and testes, and longer but narrower eggs (87–109 × 50–59 vs 70–85 × 60–84 µm); and from the two smaller forms, E. serratum Howell, 1968 and E. aconiatum Dietz, 1909, in a number of additional metrical features correlated with body size and especially in the possession of much larger collar spines. Partial fragments of the mitochondrial nad1 and 28S rRNA genes were amplified for representative isolates of the four species and analysed together with sequences for Echinostoma spp. and Echinoparyphium spp. available on GenBank. Phylogenetic analyses based on the mitochondrial nad1 gene revealed congruence between the molecular data and species identification/delineation based on morphology; this was corroborated by the 28S rDNA sequence data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bashkirova, E. Y. (1941). [Echinostomatids of birds of the USSR and a review of their life-cycles.] Trudy Bashkirskoi Nauchno-Issledovatelskoi Veterinarnoi Stantsii, 3, 243–300 (In Russian).

  • Blasco-Costa, I., Cutmore, S. C., Miller, T. L., & Nolan, M. J. (2016). Molecular approaches to trematode systematics: ‘Best practice’ and implications for future study. Systematic Parasitology, 93, 295–306.

    Article  PubMed  Google Scholar 

  • Bray, R. A., Waeschenbach, A., Cribb, T. H., Weedall, G. D., Dyal, P., & Littlewood, D. T. J. (2009). The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. Acta Parasitologica, 54, 310–329.

    Google Scholar 

  • Buscher, H. N. (1978). Echinoparyphium speotyto sp. n. (Trematoda: Echinostomatidae) from the burrowing owl in Oklahoma, with a discussion of the Genus Echinoparyphium. Journal of Parasitology, 64, 52.

    Article  CAS  PubMed  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detwiler, J. T., Bos, D. H., & Minchella, D. J. (2010). Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution, 55, 611–620.

    Article  PubMed  Google Scholar 

  • Detwiler, J. T., Zajac, A. M., Minchella, D. J., & Belden, L. K. (2012). Revealing cryptic parasite diversity in a definitive host: Echinostomes in muskrats. Journal of Parasitology, 98, 1148–1155.

    Article  PubMed  Google Scholar 

  • Faltýnková, A., Georgieva, S., Soldánová, M., & Kostadinova, A. (2015). A re-assessment of species diversity within the “revolutum” group of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) in Europe. Systematic Parasitology, 90, 1–25.

    Article  PubMed  Google Scholar 

  • Fried, B. (2001). Biology of echinostomes except Echinostoma. Advances in Parasitology, 49, 163–210.

    Article  CAS  PubMed  Google Scholar 

  • Georgieva, S., Selbach, C., Faltýnková, A., Soldánová, M., Sures, B., Skírnisson, K., Kostadinova, A. (2013). New cryptic species of the ‘revolutum’ group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasites & Vectors, 6, 64.

    Article  Google Scholar 

  • Georgieva, S., Faltýnková, A., Brown, R., Blasco-Costa, I., Soldánová, M., Sitko, J., et al. (2014). Echinostomarevolutum’ (Digenea: Echinostomatidae) species complex revisited: Species delimitation based on novel molecular and morphological data gathered in Europe. Parasites & Vectors, 7, 520.

    Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    Article  PubMed  Google Scholar 

  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate Maximum-Likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310–2314.

    Article  CAS  PubMed  Google Scholar 

  • ICZN. (2012). International Commission on Zoological Nomenclature: Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Zootaxa, 3450, 1–7.

    Google Scholar 

  • Johnston, T. H., & Angel, L. M. (1949). The life cycle of the trematode Echinoparyphium ellisi, from the black swan. Records of the South Australian Museum, 9, 247–254.

    Google Scholar 

  • Johnston, T. H., & Simpson, E. R. (1944). Larval trematodes from Australian freshwater molluscs. Part IX. Transactions of the Royal Society of South Australia, 68, 125–132.

    Google Scholar 

  • Keeney, D. B., Palladino, J., & Poulin, R. (2015). Broad geographic analyses reveal varying patterns of genetic diversity and host specificity among echinostome trematodes in New Zealand snails. Parasitology, 142, 406–415.

    Article  PubMed  Google Scholar 

  • Kostadinova, A., & Gibson, D. I. (2000). The systematics of the echinostomes. In: Fried, B. & Graczyk, T. K. (Eds) Echinostomes as Experimental Models for Biological Research. Dordrecht: Kluwer Academic Publishers, pp. 31–57.

    Chapter  Google Scholar 

  • Kostadinova, A., Herniou, E. A., Barrett, J., & Littlewood, D. T. J. (2003). Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Systematic Parasitology, 54, 159–176.

    Article  CAS  PubMed  Google Scholar 

  • Kostadinova, A., Gibson, D. I., Biserkov, V., & Chipev, N. (2000a). Re-validation of Echinostoma miyagawai Ishii, 1932 (Digenea: Echinostomatidae) on the basis of experimental completion of its life-cycle. Systematic Parasitology, 45, 81–108.

    Article  CAS  PubMed  Google Scholar 

  • Kostadinova, A., Gibson, D. I., Biserkov, V., & Ivanova, R. (2000b). A quantitative approach to the evaluation of the morphological variability of two echinostomes, Echinostoma miyagawai Ishii, 1932 and E. revolutum (Frölich, 1802) from Europe. Systematic Parasitology, 45, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Ku, C.-T., Li, M.-M., & Chu, H. (1964). Study on the trematodes of the family Echinostomatidae Dietz, 1909 of domestic birds in Peking. Acta Zoologica Sinica, 16, 39–53 (In Chinese).

    Google Scholar 

  • Leung, T. L., Keeney, D. B., & Poulin, R. (2009). Cryptic species complexes in manipulative echinostomatid trematodes: When two become six. Parasitology, 136, 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Lockyer, A. E., Olson, P. D., & Littlewood, D. T. J. (2003). Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): Implications and a review of the cercomer theory. Biological Journal of the Linnean Society London, 78, 155–171.

    Article  Google Scholar 

  • Lotfy, W. M., Brant, S. V., DeJong, R. J., Le, T. H., Demiaszkiewicz, A., Rajapakse, R. P., et al. (2008). Evolutionary origins, diversification, and biogeography of liver flukes (Digenea, Fasciolidae). American Journal of Tropical Medicine and Hygiene, 79, 248–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, J. A. T., & Blair, D. (1995). Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: An aid to establishing relationships within the 37-collar-spine group. Parasitology, 111, 609–615.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, J. A. T., & Blair, D. (1998a). Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda). Parasitology, 116, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, J. A. T., & Blair, D. (1998b). Mitochondrial ND1 gene sequences used to identify echinostome isolates from Australia and New Zealand. International Journal for Parasitology, 28, 493–502.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, J. A. T., & Blair, D. (2000). Molecular biology of echinostomes. In Fried, B. & Graczyk, T. K. (Eds.), Echinostomes as experimental models for biological research. Dordrecht: Kluwer Academic Publishers, pp. 245–266.

    Chapter  Google Scholar 

  • Nicoll, W. (1914). Trematode parasites from animals dying in the Zoological Society’s gardens during 1911–1912. Proceedings of the Zoological Society of London, 1, 139–154.

    Google Scholar 

  • Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., & Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology, 33, 733–755.

    Article  CAS  PubMed  Google Scholar 

  • Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., et al. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371.

    Article  CAS  PubMed  Google Scholar 

  • Pulis, E. E., Tkach, V. V., & Newman, R. A. (2011). Helminth parasites of the wood frog, Lithobates sylvaticus, in prairie pothole wetlands of the northern Great Plains. Wetlands, 31, 675–685.

    Article  Google Scholar 

  • Rambaut, A., & Drummond, A. J. (2009). Tracer 1.5. http://beast.bio.ed.ac.uk/Tracer.

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanevičiūtė, G., Stunžėnas, V., & Petkevičiūtė, R. (2015). Phylogenetic relationships of some species of the family Echinostomatidae Odhner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis. Comparative Cytogenetics, 9, 257–270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telford, M. J., Herniou, E. A., Russell, R. B., & Littlewood, D. T. J. (2000). Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms. Proceedings of the National Academy of Sciences USA, 97, 11359–11364.

    Article  CAS  Google Scholar 

  • Tkach, V., Pawlowski, J., Mariaux, J., & Świderski, Z. (2001). Molecular phylogeny of the suborder Plagiorchiata and its position in the system of Digenea. In: Littlewood, D. T. J. & Bray, R. A. (Eds) Interrelationships of the Platyhelminthes. London, UK: Taylor and Francis, pp. 186–193.

    Google Scholar 

  • Tkach, V. V., Kudlai, O., & Kostadinova, A. (2016). Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). International Journal for Parasitology, 46, 171–185.

    Article  PubMed  Google Scholar 

  • Tkach, V. V., Littlewood, D. T. J., Olson, P. D., Kinsella, J. M., & Swiderski, Z. (2003). Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology, 56, 1–15.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are greatly obliged to Dr Bronwen Presswell (University of Otago) for dissecting the birds and donating the specimens studied herein, and to Matt Dale who supplied the birds under licence in accordance with the regulations of the Otago Fish & Game Council, New Zealand.

Funding

This study was funded by the Czech Science Foundation (AK, SG, grant P505/12/G112) and a Marie Curie Outgoing International Fellowship for Career Development (IB-C, grant number PIOF-GA-2009-252124) within the 7th Framework Programme (FP7/2007–2013) of the European Commission. SG benefited from a postdoctoral fellowship of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Georgieva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.

Additional information

This article was registered in the Official Register of Zoological Nomenclature (ZooBank) as E02FE657-21ED-4291-BA4D-5CEF438F5C30. This article was published as an Online First article on the online publication date shown on this page. The article should be cited by using the doi number. This is the Version of Record.

This article is part of the Topical Collection Digenea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgieva, S., Blasco-Costa, I. & Kostadinova, A. Molecular characterisation of four echinostomes (Digenea: Echinostomatidae) from birds in New Zealand, with descriptions of Echinostoma novaezealandense n. sp. and Echinoparyphium poulini n. sp.. Syst Parasitol 94, 477–497 (2017). https://doi.org/10.1007/s11230-017-9712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11230-017-9712-x

Keywords

Navigation