Skip to main content
Log in

The twofold role of diagrams in Euclid’s plane geometry

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams are supposed to have an appropriate relation with these objects. I take this relation to be a quite peculiar sort of representation. Its peculiarity depends on the two following claims that I shall argue for: (i) The identity conditions of EPG objects are provided by the identity conditions of the diagrams that represent them; (ii) EPG objects inherit some properties and relations from these diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avigad J., Dean E., Mumma J. (2009) A formal system for Euclid’s Elements. The Review of Symbolic Logic 2: 700–768

    Article  Google Scholar 

  • Azzouni J. (2004) Proof and ontology in Euclidean mathematics. In: Kjeldsen T. H., Pederson S. A., Sonne-Hansen L. M. (eds) New trends in the history and philosophy of mathematics. University Press of Southern Denmark, Odense, pp 117–133

    Google Scholar 

  • Burnyeat M. F. (1987) Platonism and mathematics: A prelude to discussion. In: Graeser A. (eds) Mathematics and metaphysics in Aristotle. Haupt, Bern, pp 213–240

    Google Scholar 

  • Cavaing M. et al (1982) Quelques remarques sur le traitement du continu dans les Éléments d’Euclide et la Physique d’Aristote. In: Apéry R. (Ed.), Penser les mathématiques. Éditions du Seuil, Paris, pp 145–166

    Google Scholar 

  • Cavaing M. (1997) La figure et le nombre. Recherches sur les premires mathématiques des Grecs. Presses Universitaires du Septentrion, Villeneuve d’Ascq: Presses Universitaires du Septentrion.

    Google Scholar 

  • Chihara C. (2004) A structural account of mathematics. Clarendon Press, Oxford

    Google Scholar 

  • Coliva, A. (2011). Human diagrammatic reasoning and seeing-as. Synthese. doi:10.1007/s11229-011-9982-9

  • Euclid. (EGH). Elementa, Vols. I–IV of Euclidi Opera Omnia. B. G. Teubneri, Lipsiæ. Edited by I. L. Heiberg & H. Menge, 1883–1888, 8 vols. + 1 suppl. New edition by E. S. Stamatis, Teubner, Leipzig, 1969–1977, 5 volumes in 6 tomes.

  • Euclid. (EEH). The Thirteen Books of the Elements. Cambridge University Press, Cambridge, 2nd ed., 1926. Translated with introduction and commentary by Sir T. L. Heath, 3 vols.

  • Euclid. (EFV). Les Éléments. Paris: PUF. 4 vols. French translation and comments by B. Vitrac.

  • Friedman, M. (1985). Kant’s theory of geometry. Philosophical Review, 94, 455–506. Also in M. Friedman, Kant and the exact sciences, Harvard University Press, Cambridge, MA, 1992, pp. 55–95. I refer to this last edition.

  • Friedman, M. (2012). Kant on geometry and spatial intuition. Synthese. doi:10.1007/s11229-012-0066-2.

  • Hartshorne R. (2000) Geometry: Euclid and beyond. Springer, New York

    Google Scholar 

  • Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: Teubner. (2nd edition: 1903; 3th edition: 1909.)

  • Hilbert, D. (1998). Neubegründung der Mathematik: Erste Mitteilung. Abhandlungen aus dem Seminar der Hamburgischen Universität, 3(1), 157–177. (English translation from From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, pp. 198–214, P. Mancosu, Ed., Oxford University Press, Oxford. I quote from this translation.)

  • Kant, I. (CPRS). Critique of pure reason (N. K. Smith, Trans.). Basingstoke: Macmillan.

  • Klein, J. (1934–1936). Die griechische Logistik und die Entstehung der Algebra. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung B Studien), 3(1, 3), 18–105 (n. 1: 1934) and 122–235 (n. 3: 1936). (English translation (of a slightly amended version) Greek Mathematical Thought and the Origin of Algebra, E. Brann, Ed., 1968, Cambridge, MA, MIT Press.)

  • Macbeth, D. (2010). Diagrammatic reasoning in Euclid’s Elements. In B. Van Kerkhove, J. De Vuyst, & J. P. Van Bendegem (Eds.), Philosophical perspectives on mathematical practice (Vol. 12 of Texts in philosophy). London: College Publications.

  • Mäenpää P., von Plato L. (1990) The logic of Euclidean construction procedures. Acta Philosophica Fennica 39: 275–293

    Google Scholar 

  • Manders K. (2008a) Diagram-based geometric practice. In: Mancosu P. (Ed.), The philosophy of mathematical practice. Clarendon Press, Oxford, pp 65–79

    Chapter  Google Scholar 

  • Manders K. (2008b) The Euclidean diagram (1995). In: Mancosu P. (Ed.), The philosophy of mathematical practice. Clarendon Press, Oxford, pp 80–133

    Chapter  Google Scholar 

  • McLarty C. (2008) What structuralism archives. In: Mancosu P. (Ed.), The philosophy of mathematical practice. Oxford University Press, Oxford, pp 354–369

    Chapter  Google Scholar 

  • Miller N. (2008) Euclid and his twentieth century rivals: Diagrams in the logic of Euclidean geometry. CSLI, Stanford

    Google Scholar 

  • Mueller I. (1981) Philosophy of mathematics and deductive structure in Euclid’s Elements. MIT Press, Cambridge, MA

    Google Scholar 

  • Mumma, J. (2006). Intuition formalized: Ancient and modern methods of proof in elementary geometry. PhD thesis, Carnegie Mellon University.

  • Mumma J. (2010) Proofs, pictures, and Euclid. Synthese 175: 255–287

    Article  Google Scholar 

  • Mumma, J. (2011). Constructive geometrical reasoning and diagrams. Synthese. doi:10.1007/s11229-011-9981-x

  • Netz R. (1999) The shaping of deduction in Greek mathematics. A study in cognitive history. Cambridge university press, Cambridge

    Book  Google Scholar 

  • Norman J. (2006) After Euclid. Visual reasoning and the epistemology of diagrams. CSLI Publications, Stanford

    Google Scholar 

  • Panza M. (1992) Le labyrinthe du continu. In: Salanskis J.-M., Sinaceur H. (Ed.), De la continuité comme concept au continu comme objet mathématique. Springer-France, Paris, pp 16–30

    Google Scholar 

  • Panza M. (1997) Classical sources for the concepts of analysis and synthesis. In: Otte M., Panza M. (eds) Analysis and synthesis in mathematics. History and philosophy. Kluwer, Dordrecht, pp 365–414

    Chapter  Google Scholar 

  • Panza M. (2002) Continuidad local Aristotélica y geometria Euclidiana. In: Alvarez C., Barahona A. (eds) La Continuidad en las Ciencias. Fondo de Cultura Económica, Mexico, pp 37–120

    Google Scholar 

  • Panza M. (2007) What is new and what is old in Viète’s analysis restituita and algebra novas, and where do they come from? Some reflections on the relations between algebra and analysis before Viète. Revue d’Histoire des mathématiques 13: 83–153

    Google Scholar 

  • Panza M. (2011) Rethinking geometrical exactness. Historia Mathematica 38: 42–95

    Article  Google Scholar 

  • Parsons C. (2008) Mathematical thought and its objects. Cambridge University Press, Cambridge

    Google Scholar 

  • Plato. (EC). Plato, in twelve volumes with an English translation (12 Vols.). Cambridge, MA: Harvard University Press.

  • Proclus. (CEELF). In primum Euclidis Elementorum librum commentarii (B. G. Teubner, Lipsiæ, 1873). Ex recognitione G. Friedlein.

  • Proclus. (CEEEM). A Commentary on the First Book of Euclid’s Elements (Translated with Introduction and Notes by G. R. Morrow). Princeton: Princeton University Press.

  • Reed V. (1995) Figures of thought. Mathematics and mathematical texts. Routledge, London

    Book  Google Scholar 

  • Russo L. (1988) The definitions of fundamental geometric entities contained in book I of Euclid’s Elements. Archive for History of Exact Sciences 52: 195–219

    Article  Google Scholar 

  • Saito K. (2006) A preliminary study in the critical assessment of diagrams in Greek mathematical works. Sciamus 7: 81–144

    Google Scholar 

  • Shabel L. (2003) Mathematics in Kant’s critical philosophy. Routledge, New York

    Google Scholar 

  • Stekeler-Weithofer P. (1992) On the concept of proof in elementary geometry. In: Detlefsen M. (Ed.), Proof and knowledge in mathematics. Routledge, London, pp 135–157

    Google Scholar 

  • Taisbak C.M. (2003) ΔEΔOMENA. Euclid’s Data or The importance of being given. Museum Tusculanum Press, Copenhagen

    Google Scholar 

  • Tennant N. (1986) The withering away of formal semantics?. Mind and Language 1: 302–318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Panza.

Additional information

Some views expounded in the present paper have been previously presented in Panza (2002), whose first version was written in 1996, during a visiting professorship at the Universidad Nacional Autónoma de México. I thank all the people who supported me during my stay there. Several preliminary versions of the present paper have circulated in different forms and two of them are available online at http://hal.archives-ouvertes.fr/hal-00192165. This has allowed me to benefit from many comments, suggestions and criticisms and to change some of my views. I thank in particular, for their comments, suggestions and criticisms: Carlos Alvarez, Andrew Arana, Jeremy Avigad, Jessica Carter, Karine Chemla, Annalisa Coliva, Davide Crippa, Paolo d’Allessandro, Enzo Fano, Michael Friedman, Massimo Galuzzi, Giovanna Giardina, Bruce Glymour, Pierluigi Graziani, Jan Lacki, Abel Lassalle Casanave, Danielle Macbeth, Paolo Mancosu, Sébastien Maronne, John Mumma, Michael Hallett, Ken Manders, Michael Otte, Mircea Radu, Ferruccio Repellini, Giuseppina Ronziti, Ken Saito, Wagner Sanz, and Bernard Vitrac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panza, M. The twofold role of diagrams in Euclid’s plane geometry. Synthese 186, 55–102 (2012). https://doi.org/10.1007/s11229-012-0074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-012-0074-2

Keywords

Navigation