Skip to main content
Log in

Mathematical symbols as epistemic actions

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used to express mathematical concepts—they are constitutive of the mathematical concepts themselves. Mathematical symbols are epistemic actions, because they enable us to represent concepts that are literally unthinkable with our bare brains. Using case-studies from the history of mathematics and from educational psychology, we argue for an intimate relationship between mathematical symbols and mathematical cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams F., Aizawa K. (2001) The bounds of cognition. Philosophical Psychology 14: 43–64

    Article  Google Scholar 

  • Barabashev A. G. (1997) In support of significant modernization of original mathematical texts (in defense of presentism). Philosophia Mathematica 5: 21–41

    Article  Google Scholar 

  • Benacerraf P. (1973) Mathematical truth. Journal of Philosophy 70: 661–680

    Article  Google Scholar 

  • Biro D., Matsuzawa T. (2001) Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition 4: 193–199

    Article  Google Scholar 

  • Boyer P. (2001) Religion explained. The evolutionary origins of religious thought. Basic Books, New York

    Google Scholar 

  • Buzaglo M. (2002) The logic of concept expansion. Cambridge University Press, Cambridge

    Google Scholar 

  • Cantlon J. F., Brannon E. M., Carter E. J., Pelphrey K. A. (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology 4: e125

    Article  Google Scholar 

  • Chemla K. (2003) Generality above abstraction: The general expressed in terms of the paradigmatic in mathematics in ancient China. Science in Context 16: 413–458

    Article  Google Scholar 

  • Chrisomalis S. (2004) A cognitive typology for numerical notation. Cambridge Archaeological Journal 14: 37–52

    Article  Google Scholar 

  • Clark A. (2006) Material symbols. Philosophical Psychology 19: 291–307

    Article  Google Scholar 

  • Clark A., Chalmers D. (1998) The extended mind. Analysis 58: 7–19

    Article  Google Scholar 

  • Dacke M., Srinivasan M. V. (2008) Evidence for counting in insects. Animal Cognition 11: 683–689

    Article  Google Scholar 

  • De Cruz H. (2006) Why are some numerical concepts more successful than others? An evolutionary perspective on the history of number concepts. Evolution and Human Behavior 27: 306–323

    Article  Google Scholar 

  • De Cruz H. (2008) An extended mind perspective on natural number representation. Philosophical Psychology 21: 475–490

    Article  Google Scholar 

  • DeLoache J. S. (2004) Becoming symbol-minded. Trends in Cognitive Sciences 8: 66–70

    Article  Google Scholar 

  • De Morgan A. (1830) On the study and difficulties of mathematics. Paul Kegan, London

    Google Scholar 

  • Eger E., Sterzer P., Russ M. O., Giraud A.-L., Kleinschmidt A. (2003) A supramodal number representation in human intraparietal cortex. Neuron 37: 1–20

    Article  Google Scholar 

  • Ekert A. (2008) Complex and unpredictable Cardano. International Journal of Theoretical Physics 47: 2101–2119

    Article  Google Scholar 

  • Ernest P. (1998) Social constructivism as a philosophy of mathematics. State University of New York Press, Albany

    Google Scholar 

  • Feigenson L., Dehaene S., Spelke E. S. (2004) Core systems of number. Trends in Cognitive Sciences 8: 307–314

    Article  Google Scholar 

  • Féron J., Gentaz E., Streri A. (2006) Evidence of amodal representation of small numbers across visuo-tactile modalities in 5-month-old infants. Cognitive Development 21: 81–92

    Article  Google Scholar 

  • Fischer M. H. (2003) Cognitive representation of negative numbers. Psychological Science 14: 278–282

    Article  Google Scholar 

  • Goodman N. D. (1981) The experiential foundations of mathematical knowledge. History and Philosophy of Logic 2: 55–65

    Article  Google Scholar 

  • Harper E. (1987) Ghosts of Diophantus. Educational Studies in Mathematics 18: 75–90

    Article  Google Scholar 

  • Jordan K. E., Brannon E. M. (2006) The multisensory representation of number in infancy. Proceedings of the National Academy of Sciences of the United States of America 103: 3486–3489

    Article  Google Scholar 

  • Joseph G. G. (2000) The crest of the peacock: Non-European roots of mathematics (2nd ed.). Princeton University Press, Princeton

    Google Scholar 

  • Kirsh D. (1996) Adapting the environment instead of oneself. Adaptive Behavior 4: 415–452

    Article  Google Scholar 

  • Kirsh D., Maglio P. (1994) On distinguishing epistemic from pragmatic action. Cognitive Science 18: 513–549

    Article  Google Scholar 

  • Krieger M. H. (1991) Theorems as meaningful cultural artifacts: Making the world additive. Synthese 144: 135–154

    Article  Google Scholar 

  • Margolis E., Laurence S. (2007) The ontology of concepts—abstract objects or mental representations?. Noûs 41: 561–593

    Article  Google Scholar 

  • Meck W. H., Church R. M. (1983) A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes 9: 320–334

    Article  Google Scholar 

  • Millikan R. G. (1998) A common structure for concepts of individuals, stuffs, and real kinds: More mama, more milk, and more mouse. Behavioral and Brain Sciences 21: 55–65

    Google Scholar 

  • Muntersbjorn M. M. (2003) Representational innovation and mathematical ontology. Synthese 134: 159–180

    Article  Google Scholar 

  • Naets J. (2010) How to define a number? A general epistemological account of Simon Stevin’s art of defining. Topoi 29: 77–86

    Article  Google Scholar 

  • Netz R. (1999) Linguistic formulae as cognitive tools. Pragmatics and Cognition 7: 147–176

    Article  Google Scholar 

  • Nieder A., Miller E. K. (2003) Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37: 149–157

    Article  Google Scholar 

  • Oaks J. A. (2007) Medieval Arabic algebra as an artificial language. Journal of Indian Philosophy 35: 543–575

    Article  Google Scholar 

  • Petersson K. M., Silva C., Castro-Caldas A., Ingvar M., Reis A. (2007) Literacy: A cultural influence on functional left-right differences in the inferior parietal cortex. European Journal of Neuroscience 26: 791–799

    Article  Google Scholar 

  • Popper K. (1994) In search of a better world. Lectures and essays from thirty years. Routledge, London

    Google Scholar 

  • Preissler M., Bloom P. (2007) Two-year-olds appreciate the dual nature of pictures. Psychological Science 18: 1–2

    Article  Google Scholar 

  • Qin Y., Carter C. S., Silk E. M., Stenger V. A., Fissell K., Goode A., Anderson J. R. (2004) The change of the brain activation patterns as children learn algebra equation solving. Proceedings of the National Academy of Sciences of the United States of America 101: 5686–5691

    Article  Google Scholar 

  • Rips L., Bloomfield A., Asmuth J. (2008) From numerical concepts to concepts of number. Behavioral and Brain Sciences 31: 623–642

    Article  Google Scholar 

  • Schlimm D., Neth H. (2008) Modeling ancient and modern arithmetic practices: Addition and multiplication with Arabic and Roman numerals. In: Sloutsky V., Love B., McRae K. (eds) Proceedings of the 30th annual meeting of the Cognitive Science Society. Cognitive Science Society, Austin

    Google Scholar 

  • Schwartz D. L., Martin T., Pfaffman J. (2005) How mathematics propels the development of physical knowledge. Journal of Cognition and Development 6: 65–88

    Article  Google Scholar 

  • Sfard A. (1991) On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics 22: 1–36

    Article  Google Scholar 

  • Siegler R. S., Booth J. L. (2004) Development of numerical estimation in young children. Child Development 75: 428–444

    Article  Google Scholar 

  • Spelke E. S., Tsivkin A. (2001) Language and number: A bilingual training study. Cognition 78: 45–88

    Article  Google Scholar 

  • Sperber D. (1996) Explaining culture. A naturalistic approach. Blackwell, Oxford

    Google Scholar 

  • Staal F. (2006) Artificial languages across sciences and civilizations. Journal of Indian Philosophy 34: 89–141

    Article  Google Scholar 

  • Stedall J. A. (2001) Of our own nation: John Wallis’s account of mathematical learning in medieval England. Historia Mathematica 2: 73–122

    Article  Google Scholar 

  • Tan L. H., Feng C. M., Fox P. T., Gao J. H. (2001) An fMRI study with written Chinese. NeuroReport 12: 83–88

    Article  Google Scholar 

  • Tang Y., Zhang W., Chen K., Feng S., Ji Y., Shen J., Reiman E., Liu Y. (2006) Arithmetic processing in the brain shaped by cultures. Proceedings of the National Academy of Sciences of the United States of America 103: 10775–10780

    Article  Google Scholar 

  • Temple E., Posner M. I. (1998) Brain mechanisms of quantity are similar in 5-year-old children and adults. Proceedings of the National Academy of Sciences of the United States of America 95: 7836–7841

    Article  Google Scholar 

  • Thurston W. (2006) On proof and progress in mathematics. In: Hersh R. (Ed.) 18 unconventional essays on the nature of mathematics. Springer, New York, pp 37–55

    Chapter  Google Scholar 

  • Tratman E. K. (1976) A late Upper Palaeolithic calculator (?), Gough’s cave, Cheddar, Somerset. Proceedings of the University of Bristol Spelæological Society 14: 123–129

    Google Scholar 

  • Uttal D. H., Scudder K. V., DeLoache J. S. (1997) Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology 18: 37–54

    Article  Google Scholar 

  • Vlassis J. (2004) Making sense of the minus sign or becoming flexible in ’negativity’. Learning and Instruction 14: 469–484

    Article  Google Scholar 

  • Vlassis J. (2008) The role of mathematical symbols in the development of number conceptualization: The case of the minus sign. Philosophical Psychology 21: 555–570

    Article  Google Scholar 

  • Wellman H. M., Miller K. F. (1986) Thinking about nothing: Development of concepts of zero. British Journal of Developmental Psychology 4: 31–42

    Article  Google Scholar 

  • Whitehead A. N. (1911) An introduction to mathematics. Williams & Northgate, London

    Google Scholar 

  • Xu F., Spelke E. S. (2000) Large number discrimination in 6-month-old infants. Cognition 74: B1–B11

    Article  Google Scholar 

  • Zhang J., Norman D. A. (1995) A representational analysis of numeration systems. Cognition 57: 271–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen De Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cruz, H., De Smedt, J. Mathematical symbols as epistemic actions. Synthese 190, 3–19 (2013). https://doi.org/10.1007/s11229-010-9837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-010-9837-9

Keywords

Navigation