Skip to main content
Log in

Optional and Predictable Projections of Normal Integrands and Convex-Valued Processes

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

This article studies optional and predictable projections of integrands and convex-valued stochastic processes. The existence and uniqueness are shown under general conditions that are analogous to those for conditional expectations of integrands and random sets. In the convex case, duality correspondences between the projections and projections of epigraphs are given. These results are used to study projections of set-valued integrands. Consistently with the general theory of stochastic processes, projections are not constructed using reference measures on the optional and predictable sigma-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Back, K., Pliska, S. R.: The shadow price of information in continuous time decision problems. Stochastics 22(2), 151–186 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bismut, J. M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384–404 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bismut, J. M.: Intégrales convexes et probabilités. J. Math. Anal. Appl. 42, 639–673 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchitté, G., Valadier, M.: Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80(2), 398–420 (1988). doi:doi:10.1016/0022-1236(88)90009-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580 (1977)

  6. Choirat, C., Hess, C., Seri, R.: A functional version of the birkhoff ergodic theorem for a normal integrand: a variational approach. Ann. Probab. 31(1), 63–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Czichowsky, C., Schweizer, M.: Convex duality in mean-variance hedging under convex trading constraints. Adv. Appl. Probab. 44(4), 1084–1112 (2012). doi: doi:10.1239/aap/1354716590

    MathSciNet  MATH  Google Scholar 

  8. Dellacherie, C., Meyer, P. A.: Probabilities and Potential. North-Holland Mathematics Studies, vol. 29. North-Holland Publishing Co., Amsterdam (1978)

  9. Dellacherie, C., Meyer, P. A.: Probabilities and Potential. B, North-Holland Mathematics Studies, vol. 72. North-Holland Publishing Co., Amsterdam (1982). Theory of martingales, Translated from the French by J. P. Wilson

  10. Evstigneev, I. V.: Measurable selection and dynamic programming. Math. Oper. Res. 1(3), 267–272 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, S. W., Wang, J. G., Yan, J. A.: Semimartingale Theory and Stochastic Calculus. Kexue Chubanshe (Science Press), Beijing (1992)

    MATH  Google Scholar 

  12. Hess, C.: Convergence of conditional expectations for unbounded random sets, integrands, and integral functionals. Math. Oper. Res. 16(3), 627–649 (1991). doi: doi:10.1287/moor.16.3.627

    Article  MathSciNet  MATH  Google Scholar 

  13. Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions. J. Multivariate Anal. 7(1), 149–182 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kabanov, Y.M., Safarian, M.: Markets with Transaction Costs. Springer Finance. Springer, Berlin (2009). Mathematical theory

    MATH  Google Scholar 

  15. Kisielewicz, M.: Stochastic Differential Inclusions and Applications, Springer Optimization and its Applications, vol. 80. Springer, New York (2013)

  16. Molchanov, I.: Theory of random sets. Probability and its Applications (New York). Springer London Ltd., London (2005)

    Google Scholar 

  17. Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation. II, Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 331. Springer, Berlin (2006). Applications

  18. El Karoui, N., Tan, X.: Capacities measurable selection and dynamic programming part i:abstract framework (2013)

  19. Pennanen, T., Penner, I.: Hedging of claims with physical delivery under convex transaction costs. SIAM Journal on Financial Mathematics 1, 158–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pennanen, T., Perkkiö, A. P.: Convex integral functionals of regular processes. arXiv:http://arxiv.org/abs/1508.04609 (2015)

  21. Pennanen, T., Perkkiö, A. P., Rásonyi, M.: Existence of solutions in non-convex dynamic programming and optimal investment. Math. Finan. Econ., 1–16 (2016). doi:10.1007/s11579-016-0176-6

  22. Ransford, T. J.: Predictable Sets and Set-Valued Processes. In: Séminaire De Probabilités, XXIV, 1988/89, Lecture Notes in Math. doi:10.1007/BFb0083755, vol. 1426, pp 41–45. Springer, Berlin (1990)

  23. Rockafellar, R. T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J (1970)

    Google Scholar 

  24. Rockafellar, R. T.: Duality in Optimal Control. In: Mathematical Control Theory (Proceedings of the Conference on Australian National University, Canberra, 1977), Lecture Notes in Math, vol. 680, pp 219–257. Springer, Berlin (1978)

  25. Rockafellar, R. T., Wets, R. J. B.: Deterministic and stochastic optimization problems of Bolza type in discrete time. Stochastics 10(3-4), 273–312 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R. T., Wets, R. J. B.: Variational Analysis, Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)

  27. Thibault, L.: Espérances conditionnelles d’intégrandes semi-continus. Ann. Inst. H. Poincaré, Sect. B (N.S.) 17(4), 337–350 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Truffert, A.: Conditional expectation of integrands and random sets. Ann. Oper. Res. 30(1–4), 117–156 (1991). Stochastic programming, Part I (Ann Arbor, MI, 1989)

    MathSciNet  MATH  Google Scholar 

  29. Wang, R.: Essential (convex) closure of a family of random sets and its applications. J. Math. Anal. Appl. 262(2), 667–687 (2001). doi:doi:10.1006/jmaa.2001.7596

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, R.: Optional and predictable projections of set-valued measurable processes. Appl. Math. J. Chinese Univ. Ser. B 16(3), 323–329 (2001). doi:doi:10.1007/s11766-001-0072-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari-Pekka Perkkiö.

Additional information

The second author is grateful to the Einstein Foundation for the financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiiski, M., Perkkiö, AP. Optional and Predictable Projections of Normal Integrands and Convex-Valued Processes. Set-Valued Var. Anal 25, 313–332 (2017). https://doi.org/10.1007/s11228-016-0381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-016-0381-8

Keywords

Mathematics Subject Classification (2010)

Navigation