Skip to main content
Log in

Characterization of Lower Semicontinuous Convex Functions on Riemannian Manifolds

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In this paper, an upper subderivative of a lower semicontinuous function on a Riemannian manifold is introduced. Then, an approximate mean value theorem for the upper subderivative on a Hadamard manifold is presented. Moreover, the results are used for characterization of convex functions on Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithm on Matrix Manifolds. Princeton University Press (2008)

  2. Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemmanian center of mass. SIAM J. Control Optim. 51, 2230–2260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alavi, M., Hosseini, S., Pouryayevali, M.R.: On the calculus of limiting subjets on Riemannian manifolds. Mediterr. J. Math. 10, 593–607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azagra, D., Ferrera, J.: Proximal calculus on Riemannian manifolds. Mediterr. J. Math. 2, 437–450 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Azagra, D., Ferrera, J., López-Mesas, F.: Nonsmooth analysis and Hamilton-Jacobi equation on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Azagra, D., Ferrera, J., López-Mesas, F.: Approximate Rolle’s theorems for the proximal subgradient and the generalized gradient. J. Math. Anal. Appl. 283, 180–191 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Azagra, D., Ferrera, J., Sanz, B.: Viscosity solutions to second order partial differential equations on Riemannian manifolds. J. Diffrential Equations. 245, 307–336 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Azagra, D., Ferrera, J.: Applications of proximal calculus to fixed point theory on Riemannian manifolds. Nonlinear Anal. 67, 154–174 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barani, A., Pouryayevali, M.R.: Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70, 1850–1861 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barani, A.: Generalized monotonicity and convexity for locally Lipschitz functions on Hadamard manifolds. Differ. Geom. Dyn. Syst. 15, 26–37 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clarke, F.H., Ledayaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth analysis and control theory, graduate texts in mathematics, vol. 178. Springer, New York (1998)

  15. Clarke, F.H.: Necessary conditions for nonsmooth problems in optimal control and the calculus of variations. Thesis University of Washington, Seattle (1973)

    Google Scholar 

  16. Correa, R., Jofre, A., Thibault, L.: Characterization of lower semicontinuous convex functions. Proc. Amer. Math. Soc. 116, 67–72 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferreira, O.P.: Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds. Nonlinear Anal. 68, 1517–1528 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferreira, O.P.: Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313, 587–597 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hadjisavvas, N., Komlosi, S., Schaible, S.: Handbook of Generalized Convexity and Generalized Monotonicity. Springer, New York (2005)

    Book  MATH  Google Scholar 

  20. Hosseini, S., Pouryayevali, M.R.: Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. Nonlinear Anal. 74, 3884–3895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kristaly, A.: Nash-type equilibria on Riemannian manifolds: a variational approach. J. Math. Pures Appl. 9 101(5), 660–688 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(3), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian Manifolds. SIAM J. Optim. 21, 1523–1560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mordukhovich, B.S.: Variational analysis and generalized differentiation. In: Basic Theory, vol. I. Applications, II, Springer, Berlin (2006)

  25. Nemeth, S.Z.: Monotone vector fields. Publ. Math. Debrecen. 54, 437–449 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point method for minimizing quasiconvex locally Lipschitz functions on Hadamard manifolds. Nonlinear Anal. 75 (15), 5924–5932 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1997)

  28. Rockafellar, R.T.: Generalized directional derivatives and subgradients of nonconvex functions. Can. J. Math. XXXII, 257–280 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sakai, T.: Riemannian Geometry. Trans. Math. Monogor. 149 (1992). Amer. Math. Soc.

  30. Udriste, C.: Convex Functions and Optimization Algorithms on Riemannian Manifolds, Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994)

  31. Zagrodny, D.: Approximate mean value theorem for upper subderivatives. Nonlinear anal. 12, 1413–1428 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S. Characterization of Lower Semicontinuous Convex Functions on Riemannian Manifolds. Set-Valued Var. Anal 25, 297–311 (2017). https://doi.org/10.1007/s11228-016-0380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-016-0380-9

Keywords

Mathematics Subject Classification (2010)

Navigation