Skip to main content
Log in

Structure of Solutions of Discrete Time Optimal Control Problems in the Regions Close to the Endpoints

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We study the structure of approximate solutions of an autonomous nonconcave discrete-time optimal control system with a compact metric space of states. This control system is described by a bounded upper semicontinuous objective function which determines an optimality criterion. In our recent research we showed that approximate solutions are determined mainly by the objective function, and are essentially independent of the choice of time interval and data, except in regions close to the endpoints of the time interval. In the present paper we study the structure of approximate solutions in regions close to the endpoints of the time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, B.D.O., Moore, J.B.: Linear optimal control. Prentice-Hall, Englewood Cliffs, NJ (1971)

    MATH  Google Scholar 

  2. Aseev, S.M., Veliov, V.M.: Maximum principle for infinite-horizon optimal control problems with dominating discount. Dyn. Contin. Discret. Impulsive Syst. Ser. B 19, 43–63 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Aubry, S., Le Daeron, P.Y.: The discrete Frenkel-Kontorova model and its extensions I. Phys. D 8, 381–422 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baumeister, J., Leitao, A., Silva, G.N.: On the value function for nonautonomous optimal control problem with infinite horizon. Syst. Control. Lett. 56, 188–196 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blot, J.: Infinite-horizon Pontryagin principles without invertibility. J. Nonlinear Convex Anal. 10, 177–189 (2009)

    MathSciNet  Google Scholar 

  6. Blot, J., Cartigny, P.: Optimality in infinite-horizon variational problems under sign conditions. J. Optim. Theory Appl. 106, 411–419 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blot, J., Hayek, N.: Infinite-horizon optimal control in the discrete-time framework. SpringerBriefs in Optimization (2014)

  8. Cartigny, P., Michel, P.: On a sufficient transversality condition for infinite horizon optimal control problems. Autom. J. IFAC 39, 1007–1010 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gaitsgory, V., Rossomakhine, S., Thatcher, N.: Approximate solution of the HJB inequality related to the infinite horizon optimal control problem with discounting. Dyn. Contin. Discret. Impuls. Syst., Ser. B 19, 65–92 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Hayek, N.: Infinite horizon multiobjective optimal control problems in the discrete time case. Optim. 60, 509–529 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jasso-Fuentes, H., Hernandez-Lerma, O.: Characterizations of overtaking optimality for controlled diffusion processes. Appl. Math. Optim. 57, 349–369 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kolokoltsov, V., Yang, W.: The turnpike theorems for Markov games. Dyn. Games Appl. 2, 294–312 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leizarowitz, A.: Infinite horizon autonomous systems with unbounded cost. Appl. Math. Opt. 13, 19–43 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leizarowitz, A.: Tracking nonperiodic trajectories with the overtaking criterion. Appl. Math. Opt. 14, 155–171 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leizarowitz, A., Mizel, V.J.: One dimensional infinite horizon variational problems arising in continuum mechanics. Arch. Rational Mech. Anal. 106, 161–194 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lykina, V., Pickenhain, S., Wagner, M.: Different interpretations of the improper integral objective in an infinite horizon control problem. J. Math. Anal. Appl. 340, 498–510 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Makarov, V.L., Rubinov, A.M.: Mathematical theory of economic dynamics and equilibria. Springer-Verlag, New York (1977)

    Book  MATH  Google Scholar 

  18. Malinowska, A.B., Martins, N., Torres, D.F.M.: Transversality conditions for infinite horizon variational problems on time scales. Optim. Lett. 5, 41–53 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marcus, M., Zaslavski, A.J.: The structure of extremals of a class of second order variational problems. Ann. Inst. H. Poincaré, Anal. non linéaire 16, 593–629 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. McKenzie, L.W.: Turnpike theory. Econometrica 44, 841–866 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mordukhovich, B.S.: Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions. Appl. Anal. 90, 1075–1109 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mordukhovich, B.S., Shvartsman, I.: Optimization and feedback control of constrained parabolic systems under uncertain perturbations, Optimal control, stabilization and nonsmooth analysis. Lecture Notes Control Inform. Sci. Springer, 121–132 (2004)

  23. Ocana Anaya, E., Cartigny, P., Loisel, P.: Singular infinite horizon calculus of variations. Applications to fisheries management. J. Nonlinear Convex Anal. 10, 157–176 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Pickenhain, S., Lykina, V., Wagner, M.: On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems. Control Cybernet. 37, 451–468 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Porretta, A., Zuazua, E.: Long time versus steady state optimal control. SIAM J. Control Optim. 51, 4242–4273 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Samuelson, P.A.: A catenary turnpike theorem involving consumption and the golden rule. Amer. Econom. Rev. 55, 486–496 (1965)

    Google Scholar 

  27. Zaslavski, A.J.: Turnpike properties in the calculus of variations and optimal control. Springer, New York (2006)

    MATH  Google Scholar 

  28. Zaslavski, A.J.: Turnpike results for a discrete-time optimal control systems arising in economic dynamics. Nonlinear Anal. 67, 2024–2049 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zaslavski, A.J.: Two turnpike results for a discrete-time optimal control systems. Nonlinear Anal. 71, 902–909 (2009)

    Article  MathSciNet  Google Scholar 

  30. Zaslavski, A.J.: Stability of a turnpike phenomenon for a discrete-time optimal control systems. J. Optim. Theory Appl. 145, 597–612 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zaslavski, A.J.: Turnpike properties of approximate solutions for discrete-time control systems. Commun. Math. Anal. 11, 36–45 (2011)

    MATH  MathSciNet  Google Scholar 

  32. Zaslavski, A.J.: Structure of approximate solutions for a class of optimal control systems. J Math. Appl. 34, 1–14 (2011)

    MathSciNet  Google Scholar 

  33. Zaslavski, A.J.: Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numer. Algebra Control Optim. 1, 245–260 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zaslavski, A.J.: The existence and structure of approximate solutions of dynamic discrete time zero-sum games. J. Nonlinear Convex Anal. 12, 49–68 (2011)

    MATH  MathSciNet  Google Scholar 

  35. Zaslavski A.J.: Turnpike properties of approximate solutions of nonconcave discrete-time optimal control problems. J. Convex Anal. (2014). in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaslavski, A.J. Structure of Solutions of Discrete Time Optimal Control Problems in the Regions Close to the Endpoints. Set-Valued Var. Anal 22, 809–842 (2014). https://doi.org/10.1007/s11228-014-0290-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-014-0290-7

Keywords

Mathematics Subject Classification (2010)

Navigation