Skip to main content
Log in

Multivalued Exponentiation Analysis. Part III: Forward Exponentials

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We continue our work on exponentiability of multivalued maps on Banach spaces. In Part I we studied the exponentiability of a map F : XX by using a Maclaurin expansion approach. In Part II we studied the recursive exponentiation approach. Recursive exponentials are built by using the trajectories of a discrete-time evolution system governed by F. We now focus the attention on forward exponentiability. The forward exponential of F at the point x is defined as the Kuratowski limit

$$e^{F}(x):=\lim\limits_{n\to\infty}\; \left(I+ n^{-1} F \right)^{n}(x).$$

This type of exponential arises in connection with the Euler discretization scheme for solving the first-order differential inclusion \(\dot \psi (t)\in F(\psi (t))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amri, A., Seeger, A.: Exponentiating a bundle of linear operators. Set-Valued Anal. 14, 159–185 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anderson, R.M., Zame, W.R.: Edgeworth’s conjecture with infinitely many commodities: commodity differentiation. Econ. Theory 11, 331–377 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  4. Aubin, J.-P., Frankowska, H., Olech, C.: Controllability of convex processes. SIAM J. Control Optim. 24, 1192–1211 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aumann, R.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ayoola, E.O.: Exponential formula for the reachable sets of quantum stochastic differential inclusions. Stochastic Anal. Appl. 21, 515–543 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borwein, J., Goebel, R.: Notions of relative interior in Banach spaces. J. Math. Sci. 115, 2542–2553 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cabot, A., Seeger, A.: Multivalued exponentiation analysis. Part I: Maclaurin exponentials. Set-Valued Anal. 14, 347–379 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cabot, A., Seeger, A.: Multivalued exponentiation analysis. Part II: recursive exponentials. Set-Valued Anal. 14, 381–411 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cassels, J.W.S.: Measure of the non-convexity of sets and the Shapley-Folkman-Starr theorem. Math. Proc. Cambridge Phil. Soc. 78, 433–436 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dontchev, A.L., Farkhi, E.M.: Error estimates for discretized differential inclusion. Computing 41, 349–358 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fashoro, M., Hájek, O., Loparo, K.: Reachability properties of constrained linear systems. J. Optim. Theory Appl. 73, 169–195 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Faurre, P.: Analyse Numérique-Notes d’optimisation. Collection X, Ellipses, Paris (1988)

  14. Grammel, G.: Towards fully discretized differential inclusion. Set-Valued Anal. 11, 1–8 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Henrion, R., Lewis, A., Seeger, A.: Distance to uncontrollability for convex processes. SIAM J. Control Optim. 45, 26–50 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lempio, F., Veliov, V.: Discrete approximations of differential inclusions. Bayreuth Math. Schr. 54, 149–232 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Rockafellar, R.T.: Convex algebra and duality in dynamic models of production. In: Mathematical Models in Economics (Proc. Sympos. and Conf. von Neumann Models, Warsaw, 1972), pp. 351–378. North-Holland, Amsterdam (1974)

    Google Scholar 

  18. Rockafellar, R.T., Wets, R.: Variational Analysis. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  19. Sandberg, M.: Convergence of the forward Euler method for nonconvex differential inclusions. SIAM J. Numer. Anal. 47, 308–320 (2008/09)

    Article  MathSciNet  Google Scholar 

  20. Starr, R.M.: Quasi-equilibria in markets with non-convex preferences. Econometrica 37, 25–38 (1969)

    Article  MATH  Google Scholar 

  21. Starr, R.M.: Approximation of points of the convex hull of a sum of sets by points of the sum: an elementary approach. J. Econ. Theory 25, 314–317 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wolenski, P.: The exponential formula for the reachable set of a Lipschitz differential inclusion. SIAM J. Control Optim. 28, 1148–1161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wolenski, P.: A uniqueness theorem for differential inclusions. J. Diff. Equ. 84, 165–182 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Cabot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabot, A., Seeger, A. Multivalued Exponentiation Analysis. Part III: Forward Exponentials. Set-Valued Var. Anal 22, 617–638 (2014). https://doi.org/10.1007/s11228-014-0273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-014-0273-8

Keywords

Mathematics Subject Classifications (2010)

Navigation