Skip to main content
Log in

A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is the appearance of new technology and can be a suitable alternative to semiconductor transistor technology. In this paper, the new structure of the two-input XOR gate is presented, which is the modified version of the three-input XOR gate. This structure can be used to design various useful QCA circuits. By utilizing this gate, we design and implement a new full adder structure with 90-degree cells. This structure is designed in a single layer without cross-wiring. The operation of the proposed structure has been verified by QCADesigner version 2.0.3 and energy dissipation investigated by QCAPro tool. We also compared the effectiveness of our structure with the two previous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heikalabad SR, Navin AH, Hosseinzadeh M (2015) Midpoint memory: a special memory structure for data-oriented models implementation. J Circuits Syst Comput 24:1550063

    Article  Google Scholar 

  2. Yu W, Zhang B, Liu C, Zhao Y, Wu WR, Xue ZY, Chen M, Buca D, Hartmann J-M, Wang X, Zhao QT, Mantl S (2014) Impact of Si cap, strain and temperature on the hole mobility of (s)Si/sSiGe/(s)SOI quantum-well p-MOSFETs. Microelectron Eng 113:5–9. https://doi.org/10.1016/j.mee.2013.06.015

    Article  Google Scholar 

  3. Liu M (2006) Robustness and power dissipation in quantum-dot cellular automata. Ph.D. thesis, Notre dame University, Indiana

  4. Heikalabad SR, Navin AH, Hosseinzadeh M (2016) Content addressable memory cell in quantum-dot cellular automata. Microelectron Eng 163:140–150

    Article  Google Scholar 

  5. Fey D (2012) Optical multiplexing techniques for photonic Clos networks in High Performance Computing Architectures. J Supercomput 62(2):620–632

    Article  Google Scholar 

  6. Bose R, Johnson HT (2004) Coulomb interaction energy in optical and quantum computing applications of self-assembled quantum dots. Microelectron Eng 75(1):43–53. https://doi.org/10.1016/j.mee.2003.11.008

    Article  Google Scholar 

  7. Niemier MT (2004) Designing digital systems in quantum cellular automata. M.S. thesis, Notre Dame University, Indiana

  8. Karkaj ET, Heikalabad SR (2017) Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik Int J Light Electron Opt. https://doi.org/10.1016/j.ijleo.2016.11.087

    Google Scholar 

  9. Karkaj ET, Heikalabad SR (2017) A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2016.08.054

    Google Scholar 

  10. Gadim MR, Navimipour NJ (2017) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol. https://doi.org/10.1007/s00542-017-3502-x

    Google Scholar 

  11. Jayashree HV (2016) Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J Supercomput 72(4):1477–1493

    Article  Google Scholar 

  12. Valinataj M (2017) Novel parity-preserving reversible logic array multipliers. J Supercomput 73(11):4843–4867

    Article  Google Scholar 

  13. Kotiyal S (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693

    Article  Google Scholar 

  14. Khan MHA (2017) Automatic synthesis of quaternary quantum circuits. J Supercomput 73(5):1733–1759

    Article  Google Scholar 

  15. Len CS, Tougaw PD (1993) Lines of interaction quantum-dot cells: a binary wire. J Appl Phys 74:6227–6233

    Article  Google Scholar 

  16. Rad SK, Heikalabad SR (2017) Reversible flip-flops in quantum-dot cellular automata. Int J Theor Phys 56(9):2990–3004. https://doi.org/10.1007/s10773-017-3575-4

    Article  MATH  Google Scholar 

  17. Barughi YZ, Heikalabad SR (2017) A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int J Theor Phys 56(9):2848–2858. https://doi.org/10.1007/s10773-017-3453-0

    Article  MATH  Google Scholar 

  18. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57

    Article  Google Scholar 

  19. Lent C, Tougaw P (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557

    Article  Google Scholar 

  20. Asfestani MN, Heikalabad SR (2017) A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys B Phys Condens Matter. https://doi.org/10.1016/j.physb.2017.02.028

    Google Scholar 

  21. Asfestani MN, Heikalabad SR (2017) A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys B Phys Condens Matter. https://doi.org/10.1016/j.physb.2017.06.059

    Google Scholar 

  22. Angizi S, Alkaldy E, Bagherzadeh N, Navi K (2014) Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J Low Power Electron 10:259–271

    Article  Google Scholar 

  23. Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone based crossover. IEEE Trans Nanotechnol 14:497–504. https://doi.org/10.1109/TNANO.2015.2409117

    Article  Google Scholar 

  24. Mohammadi M, Mohammadi M, Gorgin S (2016) An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J 50:35–43

    Article  Google Scholar 

  25. Sasamal TN, Singh AK, Mohan A (2016) An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik Int J Light Electron Opt 127(20):8576–8591

    Article  Google Scholar 

  26. Farazkish R, Khodaparast F (2015) Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess Microsyst 39(6):426–433

    Article  Google Scholar 

  27. Ahmad F, Bhat GM, Khademolhosseini H, Azimi S, Angizi S, Navi K (2016) Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci 16:8–15

    Article  MathSciNet  Google Scholar 

  28. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):2631

    Article  Google Scholar 

  29. Tangmettajittakul O, Thainoi S, Changmoang P, Kanjanachuchai S, Rattanathammaphan S, Panyakeow S (2010) Extended optical properties beyond band-edge of GaAs by InAs quantum dots and quantum dot molecules. Microelectron Eng 87(5–8):1304–1307. https://doi.org/10.1016/j.mee.2009.12.063

    Article  Google Scholar 

  30. Srivastava S, Asthana A, Bhanja S, Sarkar (2011) QCAPro-an error power estimation tool for QCA circuit design. In: Proceedings of the IEEE International Symposium Circuits System, pp 2377–2380

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikalabad, S.R., Asfestani, M.N. & Hosseinzadeh, M. A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 74, 1994–2005 (2018). https://doi.org/10.1007/s11227-017-2206-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2206-4

Keywords

Navigation