Skip to main content
Log in

Reversible logic based multiplication computing unit using binary tree data structure

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Reversible logic has emerged as a promising computing paradigm having applications in quantum computing, optical computing, dissipationless computing and low-power computing, etc. In reversible logic there exists a one-to-one mapping between the input and output vectors. Reversible circuits require constant ancilla inputs for reconfiguration of gate functions and garbage outputs that help in keeping reversibility. Reversible circuits of many qubits are extremely difficult to realize; thus, reduction in the number of ancilla inputs and the garbage outputs is the primary goal of optimization. In existing literature, researchers have proposed several designs of reversible multipliers based on reversible full adders and reversible half adders. The use of reversible full adders and half adders for the addition of partial products increases the overhead in terms of the number of ancilla inputs and garbage outputs. This paper presents a binary tree-based design methodology for an \(N \times N\) reversible multiplier. The proposed binary tree-based design methodology for \(N \times N\) reversible multiplier performs the addition of partial products in parallel using the reversible ripple adders with zero ancilla bit and zero garbage bit; thereby, minimizing the number of ancilla and garbage bits used in the design. The proposed design methodology shows a 17.86–60.34 % improvement in terms of ancilla inputs; and 21.43–52.17 % in terms of garbage outputs compared to all the existing reversible multiplier designs. The methodology is also extended to the design of \(N \times N\) reversible signed multiplier based on modified Baugh–Wooley multiplication methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, New York

    MATH  Google Scholar 

  2. Vedral V, Barenco A, Ekert A (1996) Quantum networks for elementary arithmetic operations. Phys Rev A 54(1):147–153

    Article  MathSciNet  Google Scholar 

  3. Vos AD, Rentergem YV (2005) Power consumption in reversible logic addressed by a ramp voltage. In: Proceedings of the 15th international workshop patmos (2005) LNCS, vol 3728, pp 207–216

  4. Ercan I, Anderson N (2011) Heat dissipation bounds for nanocomputing: theory and application to qca. In: Proceedings of 11th IEEE conference on nanotechnology (IEEE-NANO), pp 1289–1294

  5. Anderson N, Ercan I, Ganesh N (2012) Toward nanoprocessor thermodynamics. In: Proceedings of 12th IEEE conference on nanotechnology (IEEE-NANO), pp 1–6

  6. Stearns K, Anderson N (2013) Throughput-dissipation tradeoff in partially reversible nanocomputing: a case study. In: Proceedings of nanoscale architectures (NANOARCH), 2013 IEEE/ACM international symposium, pp 101–105

  7. Cuccaro SA, Draper TG, Kutin SA, Moulton DP (2004) A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184

  8. Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448

    MATH  MathSciNet  Google Scholar 

  9. Draper TG, Kutin SA, Rains EM, Svore KM (2006) A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput 6(4):351–369

    MATH  MathSciNet  Google Scholar 

  10. Takahashi Y, Tani S, Kunihiro N (2004) Quantum addition circuits and unbounded fan-out. arXiv:0910.2530

  11. Takahashi Y (2010) Quantum arithmetic circuits: a survey. In: Proceedings of IEICE transactions on fundamentals, vol E92-A, no 5, pp 276–1283

  12. Desoete B, Vos AD (2002) A reversible carry-look-ahead adder using control gates. Integr VLSI J 33(1):89–104

    Article  MATH  Google Scholar 

  13. Biswas AK, Hasan MM, Chowdhury AR, Babu HMH (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 39(12):1693–1703

    Article  Google Scholar 

  14. Kotiyal S, Thapliyal H, Ranganathan N (2011) Design of a reversible bidirectional barrel shifter. In: Proceedings of 11th IEEE conference on nanotechnology (IEEE-NANO), pp 463–468

  15. Haghparast M, Jassbi S, Navi K, Hashemipour O (2008) Design of a novel reversible multiplier circuit using hng gate in nanotechnology. World App Sci J 3(6):974–978

    Google Scholar 

  16. Sultana S, Radecka K (2011) Reversible adder/subtractor with overflow detector. In: Proceedings of circuits and systems (MWSCAS), 2011 IEEE 54th international midwest symposium, pp 1–4

  17. Sultana S, Radecka K (2011) Reversible implementation of square-root circuit. In: Proceedings of electronics, circuits and systems (ICECS), 18th IEEE international conference, pp 141–144

  18. Sultana S, Radecka K (2013) Testing reversible adder/subtractor for missing control points. In: Proceedings of the 56th IEEE international midwest symposium on circuits and systems (MWSCAS), Columbus

  19. Shams M, Haghparast M, Navi K (2008) Novel reversible multiplier circuit in nanotechnology. World Appl Sci J 3:806–810

    Google Scholar 

  20. Haghparast M, Mohammadi M, Navi K, Eshghi M (2009) Optimized reversible multiplier circuit. J Circuits Syst Comput 18(2):311–323

    Article  Google Scholar 

  21. Thapliyal H, Srinivas M (2006) Novel reversible multiplier architecture using reversible tsg gate. In: Proceedings of computer systems and applications, IEEE international conference, vol 8, pp 100–103

  22. Thapliyal H, Srinivas M, Arabnia HR (2005) A reversible version of \(4 \times 4\) bit array multiplier with minimum gates and garbage outputs. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 106–116

  23. Peres A (1985) Reversible logic and quantum computers. Phys Rev A Gen Phys 32(6):3266–3276

  24. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhou R, Shi Y, Wang H, Cao J (2011) Transistor realization of reversible “zs” series gates and reversible array multiplier. Microelectron J 42(2):305–315

    Article  Google Scholar 

  26. Thapliyal H, Jayashree H, Nagamani A, Arabnia H (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Gavrilova M, Tan C (eds) Proceedings of transactions on computational science XVII, ser lecture notes in computer science, Springer, Berlin, vol 7420, pp 73–97

  27. Thapliyal H, Arabnia H (2006) Combined integer and floating point multiplication architecture (cifm) for fpgas and its reversible logic implementation. In: Proceedings of circuits and systems, MWSCAS’06, 49th IEEE international midwest symposium, vol 2, pp 438–442

  28. Bruce JW, Thornton MA, Shivakumaraiah L, Kokate PS, Li X (2002) Efficient adder circuits based on a conservative reversible logic gate. Proc IEEE Symp VLSI 2002:83–88

    Google Scholar 

  29. Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 165–172

  30. Akbar EPA, Haghparast M, Navi K (2011) Novel design of a fast reversible wallace sign multiplier circuit in nanotechnology. Microelectron J 42(8):973–981

    Article  Google Scholar 

  31. Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 60–566

  32. Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (rpla) using fredkin and feynman gates for industrial electronics and applications. arXiv:cs/0609029

  33. Babu HM, Chowdhury A (2006) Design of a compact reversible binary coded decimal adder circuit. Elsevier J Syst Arch 52:272–282

    Article  Google Scholar 

  34. Mohammadi M, Eshghi M, Haghparast M, Bahrololoom A (2008) Design and optimization of reversible bcd adder/subtractor circuit for quantum and nanotechnology based systems. World Appl Sci J 4(6):787–792

    Google Scholar 

  35. Thapliyal H, Arabnia H, Srinivas M (2009) Efficient reversible logic design of bcd subtractors. In: Proceedings of transactions on computational sciences journal, LNCS 5300, vol 3. Springer, New York, pp 99–121

  36. Mohammadi M, Haghparast M, Eshghi M, Navi K (2009) Minimization optimization of reversible bcd-full adder/subtractor using genetic algorithm and don’t care concept. Int J Quantum Inf 7(5):969–989

    Article  MATH  Google Scholar 

  37. James RK, Jacob KP, Sasi S (2008) Reversible binary coded decimal adders using toffoli gates. In: Proceedings of advances in computational algorithms and data analysis, LNEE, vol 15, pp 117–131

  38. Thapliyal H, Arabnia HR, Bajpai R, Sharma KK (2007) Partial reversible gates (prg) for reversible bcd arithmetic. arXiv:0711.2674

  39. Rangaraju H, Suresh A, Muralidhara K (2013) Design of efficient reversible multiplier. In: Meghanathan N, Nagamalai D, Chaki N (eds) Proceedings of advances in computing and information technology, ser advances in intelligent systems and computing, vol 178. Springer, Berlin, pp 571–579

  40. Thapliyal H, Ranganathan N (2011) A new reversible design of bcd adder. In: Proceedings of design, automation test in Europe conference exhibition (DATE), pp 1–4

  41. Bhardwaj K, Deshpande B (2013) K-algorithm: an improved booth’s recoding for optimal fault-tolerant reversible multiplier. In: Proceedings of VLSI design, 12th international conference on embedded systems (VLSID), 26th international conference, pp 362–367

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Thapliyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotiyal, S., Thapliyal, H. & Ranganathan, N. Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71, 2668–2693 (2015). https://doi.org/10.1007/s11227-015-1410-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1410-3

Keywords

Navigation