Skip to main content
Log in

Convert-and-Deliver: a scalable multicast optical cross-connect with reduced power splitting fan-out

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Powerful computing systems interconnected via high-bandwidth wavelength division multiplexing (WDM) fibers are becoming inevitable to meet the needs of emerging computation and communication applications. Enabling multicast over WDM links requires the use of multicast-capable optical cross-connects (MC-OXCs) equipped with power splitters to replicate and interconnect an input signal on a particular wavelength to one or more output fibers, possibly on different wavelengths. All existing design approaches for FW×FW strictly nonblocking MC-OXCs with F fibers, each carries W wavelengths require the use of power splitters with a fan-out degree of O(FW). For typical large values of F and W, complex and power-consuming active devices are needed to compensate for the lost power due to splitting. In this paper, we propose a new class of strictly nonblocking MC-OXC, namely, the Convert-and-Deliver (CAD) cross-connect to reduce power consumption. The new CAD OXC uses power splitters with a fan-out degree of only O(F) instead of O(FW). It is shown that, making the fan-out degree independent of W in the proposed design does not only reduce splitting power loss considerably, but it also enhances the scalability of the design. In particular, for any value of F, upgrading the number of wavelengths per fiber does not incur any changes to the fan-out degree or the power loss in the used splitters; a feature that cannot be obtained with any existing MC-OXC design approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leisching P, Pickavet M (2009) Energy footprint of ICT: forecasts and network solutions. In: Workshop at OFC/NFOEC’09, March 2009

    Google Scholar 

  2. Simeonidou D, Pickavet M (2009) Green optical networks report. Building the future optical network in Europe (BONE) project. December. http://www.ict-bone.eu/portal/landing_pages/bone_deliverables.html

  3. Smarr LL et al (2003) The OptIPuter. Commun ACM 46:59–66

    Article  Google Scholar 

  4. Yang Y, Wang J (2004) Designing WDM optical interconnects with full connectivity by using limited wavelength conversion. IEEE Trans Comput 53(12):1547–1556

    Article  Google Scholar 

  5. Yang Y, Wang J (2005) Cost-effective designs of WDM optical interconnects. IEEE Trans Parallel Distrib Syst 16(1):51–66

    Article  Google Scholar 

  6. Chen Y, Tang W (2010) Reconfigurable asymmetric optical burst switching for concurrent DWDM multimode switching: architecture and research directions. IEEE Commun Mag 48(5):57–65

    Article  Google Scholar 

  7. Han G, Yang Y (2007) Scheduling and performance analysis of multicast interconnects. J Supercomput 40:109–125

    Article  Google Scholar 

  8. Yang Y, Wang J, Qiao C (2000) Nonblocking WDM multicast OXCs. IEEE Trans Parallel Distrib Syst 11(12):1274–1287

    Article  Google Scholar 

  9. Pan Z, Yang H, Yang J, Hu J, Zhu Z, Cao J, Okamoto K, Yamano S, Akella V, Yoo SJB (2005) Advanced optical-label routing system supporting multicast, optical TTL, and multimedia applications. J Lightwave Technol 23(10):3270–3281

    Article  Google Scholar 

  10. Mukherjee B (2000) WDM optical communication networks: progress and challenges. IEEE J Sel Areas Commun 18(10):1810–1824

    Article  Google Scholar 

  11. Ali M, Deogun JS (2000) Power-efficient design of multicast wavelength-routed networks. IEEE J Sel Areas Commun 18(10):1852–1862

    Article  Google Scholar 

  12. Pan D, Anand V, Ngo HQ (2004) Cost-effective constructions for nonblocking WDM multicast OXCs. In: IEEE ICC 04, pp 1801–1805

    Google Scholar 

  13. Poo G-S, Zhou Y (2006) A new multicast wavelength assignment algorithm in wavelength-routed WDM networks. IEEE J Sel Areas Commun 24(4):2–12

    Article  Google Scholar 

  14. Ngo HQ, Pan D, Qiao C (2004) Nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion. In: Proc of the 23rd annual joint conference of the IEEE computer and communications societies (INFOCOM 04) vol 2, pp 1352–1362

    Google Scholar 

  15. Ngo HQ, Pan D, Yang Y (2007) Optical switching networks with minimum number of limited-range wavelength converters. IEEE/ACM Trans Netw 15(4):969–979

    Article  Google Scholar 

  16. Sankaranarayanan S, Subramaniam S (2002) Comprehensive performance modeling and analysis of multicasting in optical networks. IEEE J Sel Areas Commun 20:202–215

    Article  Google Scholar 

  17. Liang W (2004) Constructing multiple light multicast trees in WDM optical networks. In: Proc. 7th international symposium on parallel architectures, algorithms and networks, pp 482–488

    Chapter  Google Scholar 

  18. Xin Y, Rouskas GN (2004) Multicast routing under optical layer constraints. In: Proc of IEEE INFOCOM ’04, vol 4, pp 2731–2742

    Google Scholar 

  19. Hu WS, Zeng QJ (1998) Multicasting optical cross connects employing splitter-and-delivery switch. IEEE Photonics Technol Lett 10(7):970–972

    Article  Google Scholar 

  20. Eramo V, Listanti M (2009) Power consumption in bufferless optical packet switches in SOA technology. J Opt Commun Netw 1(3):B15–B29

    Article  Google Scholar 

  21. Hamza HS, Deogun JS (2006) Strictly nonblocking multicasting WDM optical cross connects using multiwavelength converters. In: Proc. of 14th IEEE symposium on high-performance interconnects (HOTI’06), pp 37–44

    Chapter  Google Scholar 

  22. Chow CW, Wong CS, Tsang HK (2003) 8×10 Gb/s multi-wavelength injection locking of a FP laser diode for WDM multicast. In: Proc 16th IEEE annual meeting of lasers and electro-optics society (LEOS 2003), vol 2, pp 682–683

    Chapter  Google Scholar 

  23. Contestabile G, Presi M, Ciaramella E (2004) Multiple wavelength conversion for WDM multicasting by FWM in an SOA, IEEE Photonics Technol Lett 16(7):1775–1777

    Article  Google Scholar 

  24. Morioka K, Mori K, Kawanishi S, Saruwatari M (1994) Pulse-width tunable, self-frequency conversion of short optical pulses over 200 nm based on supercontinuum generation. Electron Lett 30:1960–1962

    Article  Google Scholar 

  25. Futami F, Okabe R, Tacita Y, Watanabe S (2003) Transparent wavelength conversion at up to 160 Gb/s by using supercontinuum generation in a nonlinear fiber. In: Proc optical amplifiers and their applications, OAA ’03, Paper MD07

    Google Scholar 

  26. Pleumeekers JL, Leuthold J, Kauer M, Bernasocni P, Burrus CA, Cappuzzo M, Chen E, Gomez L, Laskowski E (2002) All-optical wavelength conversion and broadcasting to eight separate channels by a single semiconductor optical amplifier delay interferometer. In: Proc optical fiber communications OFC ’02, pp 596–597

    Google Scholar 

  27. Kalogerakis G, Marhic ME, Kazovsky LG (2005) Multiple-wavelength conversion with gain by a high-repetition-rate pulsed-pump fiber OPA. IEEE/OSA J Lightwave Technol 23(10):2954–2960

    Article  Google Scholar 

  28. Yamazaki E, Tadanaga O, Takada A, Asobe M, Yamawaku J, Morioka T (2004) Simultaneous and arbitrary wavelength conversion of WDM signals using multiple wavelength quasi phase matched LiNbo3 waveguide. In: Optical fiber communications OFC ’04, Paper FL6

    Google Scholar 

  29. Yamada E, Sanjoh H, Ishikawa M, Yoshikuni Y (2003) High-speed wavelength switching in wavelength conversion using spectral duplication. In: Optical fiber communications OFC ’03, Paper MF93

    Google Scholar 

  30. Zhou J, Cadeddu R, Casaccia E, Cavazzoni C, O’Mahony MJ (1996) Crosstalk in multiwavelength optical cross-connect networks. J Lightwave Technol 14:1423–1435

    Article  Google Scholar 

  31. Contestabile G, Calabretta N, Proietti R, Ciaramella E (2006) Double-stage cross-gain modulation in SOAs: an effective technique for WDM multicasting. IEEE Photonics Technol Lett 18(1):181–183

    Article  Google Scholar 

  32. Krcmarik D, Karasek M, Radil J, Vojtech J (2007) Multi-wavelength conversion at 10 Gb/s using cross-phase modulation in highly nonlinear fiber. J Opt Commun 278(2):402–412

    Article  Google Scholar 

  33. Karasek M, Honzatko P, Radil J, Vojtech J (2008) Multi-wavelength conversion at 10 Gb/s and 40 GHz using a hybrid integrated SOA Mach–Zehnder interferometer. In: Proc of int conf on transparent optical networks (ICTON 2008), vol 1, pp 22–26, June 2008

    Google Scholar 

  34. Bres C-S, Wiberg AOJ, Kuo BP-P, Alic N, Radic S (2009) Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier. IEEE Photonics Technol Lett 21(14):1002–1004

    Article  Google Scholar 

  35. Eramo V, Listanti M (2006) Performance analysis of optical packet equipped with multicast wavelength converters. OSA J Opt Netw 5:82–96

    Article  Google Scholar 

  36. Qin X, Yang Y (2002) Nonblocking WDM switching networks with full and limited wavelength conversion. IEEE Trans Commun 50(12):2032–2041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitham S. Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamza, H.S. Convert-and-Deliver: a scalable multicast optical cross-connect with reduced power splitting fan-out. J Supercomput 62, 1189–1212 (2012). https://doi.org/10.1007/s11227-011-0565-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-011-0565-9

Keywords

Navigation