1.

Boldini, P., Vagueness and type theory, in C. Retoréd.), *Logical Aspects of Computational Linguistics*, LNCS 1328, Springer, 1997, pp. 134–148.

2.

Fernando, T., Conservative generalized quantifiers and presupposition, in *Proceedings of Semantics and Linguistic Theory XI*,Cornell University, 2001, pp. 172–191.

3.

Fernando T.: Situations as strings. Electronic Notes in Theoretical Computer Science

**165**, 23–36 (2006)

CrossRefGoogle Scholar4.

Francez, N., and R. Dyckhoff, Proof-theoretic semantics for a natural language fragment, in C. Ebert, G. Jäger, and J. Michaelis (eds.), *Mathematics of Language 10/11*,LNAI 6149, Springer, 2010, pp. 56–71.

5.

Francez N., Dyckhoff R.: Proof-theoretic semantics for a natural language fragment. Linguistics and Philosophy

**33**, 447–477 (2010)

CrossRefGoogle Scholar6.

Francez N., Dyckhoff R., Ben-Avi G.: Proof-theoretic semantics for subsentential phrases. Studia Logica

**94**, 381–401 (2010)

CrossRefGoogle Scholar7.

Krahmer, E., and P. Piwek, Presupposition projection as proof construction, in H. Bunt, and R. Muskens (eds.), *Computing Meaning*,Vol. 1, Kluwer Academic Publishers, 1999, pp. 281–300.

8.

Martin-Löf, P., *Intuitionistic Type Theory*, Bibliopolis, 1984

9.

Nordström, B., K. Petersson, and J. M. Smith, *Programming in Martin-Löf’s Type Theory*, Clarendon Press, 1990.

10.

Prawitz, D., Ideas and results in proof theory, in J.E. Fenstad (ed.), *Proceedings of the Second Scandinavian Logic Symposium (Oslo 1970)*, North-Holland, 1971, pp. 235–309.

11.

Prawitz, D., Towards a foundation of a general proof theory, in P. Suppes et al. (eds.), *Logic, Methodology, and Philosophy of Science IV*, North-Holland, 1973, pp. 225–250.

12.

Prawitz, D., Meaning approached via proofs, *Synthese* 148:1–12. Special issue on *Proof-Theoretic Semantics* edited by R. Kahle, and P. Schroeder-Heister, 2006.

13.

Primiero, G., and B. Jespersen, Two kinds of procedural semantics for privative modification, in K. Nakakoji, Y. Murakami, and E.McCready (eds.), *New Frontiers in Artificial Intelligence*, LNAI 6284, Springer, 2010, pp. 252–271.

14.

Ranta A.: Intuitionistic categorial grammar. Linguistics and Philosophy

**14**, 203–239 (1991)

CrossRefGoogle Scholar15.

Ranta, A., *Type-Theoretical Grammar*, Clarendon Press, 1994.

16.

Rathjen M.: The constructive Hilbert program and the limits of Martin-Löf Type Theory. Synthese

**147**, 81–120 (2005)

CrossRefGoogle Scholar17.

Sundholm, G., Proof-theory and meaning, in D. M. Gabbay, and F.Guenthner (eds.), *Handbook of Philosophical Logic*, 2nd Edition, Vol. 9, Kluwer Academic Publishers, 2002, pp. 165–198. (First published in 1984.)

18.

Sundholm G.: Constructive generalized quantifiers. Synthese

**79**, 1–12 (1989)

CrossRefGoogle Scholar19.

Więckowski B. (2010) Associative substitutional semantics and quantified modal logic. Studia Logica 94:105–138

20.

Więckowski B. (2011) Rules for subatomic derivation, The Review of Symbolic Logic 4:219–236

21.

Zimmermann T. E.: On the proper treatment of opacity in certain verbs. Natural Language Semantics

**1**, 149–179 (1993)

CrossRefGoogle Scholar22.

Zimmermann T. E.: Monotonicity in opaque verbs. Linguistics and Philosophy

**29**, 715–761 (2006)

CrossRefGoogle Scholar