Skip to main content
Log in

A 2-categorial Generalization of the Concept of Institution

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

After defining, for each many-sorted signature Σ = (S, Σ), the category Ter(Σ), of generalized terms for Σ (which is the dual of the Kleisli category for \({\mathbb {T}_{\bf \Sigma}}\), the monad in Set S determined by the adjunction \({{\bf T}_{\bf \Sigma} \dashv {\rm G}_{\bf \Sigma}}\) from Set S to Alg(Σ), the category of Σ-algebras), we assign, to a signature morphism d from Σ to Λ, the functor \({{\bf d}_\diamond}\) from Ter(Σ) to Ter(Λ). Once defined the mappings that assign, respectively, to a many-sorted signature the corresponding category of generalized terms and to a signature morphism the functor between the associated categories of generalized terms, we state that both mappings are actually the components of a pseudo-functor Ter from Sig to the 2-category Cat. Next we prove that there is a functor TrΣ, of realization of generalized terms as term operations, from Alg(Σ) × Ter(Σ) to Set, that simultaneously formalizes the procedure of realization of generalized terms and its naturalness (by taking into account the variation of the algebras through the homomorphisms between them). We remark that from this fact we will get the invariance of the relation of satisfaction under signature change. Moreover, we prove that, for each signature morphism d from Σ to Λ, there exists a natural isomorphism θ d from the functor \({{{\rm Tr}^{\bf {\bf \Lambda}} \circ ({\rm Id} \times {\bf d}_\diamond)}}\) to the functor \({{\rm Tr}^{\bf \Sigma} \circ ({\bf d}^* \times {\rm Id})}\), both from the category Alg(Λ) × Ter(Σ) to the category Set, where d* is the value at d of the arrow mapping of a contravariant functor Alg from Sig to Cat, that shows the invariant character of the procedure of realization of generalized terms under signature change. Finally, we construct the many-sorted term institution by combining adequately the above components (and, in a derived way, the many-sorted specification institution), but for a strict generalization of the standard notion of institution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek J., Herrlich H., Strecker G.E.: Abstract and concrete categories. John Wiley & Sons, Inc., New York (1990)

    Google Scholar 

  2. Bénabou J.: ‘Structures algebriques dans les categories’. Cahiers Topologie Géom. Différentielle 10, 1–126 (1968)

    Google Scholar 

  3. Birkhoff G., Lipson J.D.: ‘Heterogeneous algebras’. J. Combinatorial Theory 8, 115–133 (1970)

    Article  Google Scholar 

  4. Borceux F., Janelidze G.: Galois theories. Cambridge University Press, UK (2001)

    Book  Google Scholar 

  5. Climent J., Soliveres J.: ‘The completeness theorem for monads in categories of sorted sets’. Houston J. Math. 31, 103–129 (2005)

    Google Scholar 

  6. Climent J., Soliveres J.: ‘A 2-categorical framework for the syntax and semantics of many-sorted equational logic’. Reports on Mathematical Logic 45, 37–95 (2010)

    Google Scholar 

  7. Cohn, P., Universal algebra, D. Reidel Publishing Co., Dordrech: Holland/Boston: U.S.A./London: England, 1981.

  8. Diaconescu R.: Institution-independent Model Theory. Birkhäuser, Basel·Boston (2008)

    Google Scholar 

  9. Ehresmann Ch.: Catégories et structures. Dunod, Paris (1965)

    Google Scholar 

  10. Fujiwara T.: ‘On mappings between algebraic systems’. Osaka Math. J. 11, 153–172 (1959)

    Google Scholar 

  11. Fujiwara T.: ‘On mappings between algebraic systems II’. Osaka Math. J. 12, 253–268 (1960)

    Google Scholar 

  12. Goguen, J., and R. Burstall, Introducing institutions, in E. Clarke (ed.), Proc. Logics of Programming Workshop (Pittsburgh, Pa., 1983), Springer-Verlag, Berlin, 1984, pp. 221–256.

  13. Goguen J., Burstall R.: ‘Some fundamental algebraic tools for the semantics of computation. Part I: Comma categories, colimits, signatures and theories’. Theoretical Computer Science 31, 175–209 (1984)

    Article  Google Scholar 

  14. Goguen J., Burstall R.: ‘Some fundamental algebraic tools for the semantics of computation. Part II: Signed and abstract theories’. Theoretical Computer Science 31, 263–295 (1984)

    Article  Google Scholar 

  15. Goguen, J., and R. Burstall, A study in the foundations of programming methodology: Specifications, institutions, charters and parchments, in D. Pitt et alii. (eds.), Proc. Summer Workshop on Category Theory and Computer Programming (Guildford, 1985), Springer-Verlag, Berlin, 1986, pp. 313–333.

  16. Goguen J., Meseguer J.: ‘Completeness of many-sorted equational logic’. Houston J. Math. 11, 307–334 (1985)

    Google Scholar 

  17. Grätzer G.: Universal algebra, 2nd ed. Springer-Verlag, New York-Heidelberg-Berlin (1979)

    Google Scholar 

  18. Grothendieck, A., ‘Catégories fibrées et descente (Exposé VI)’, in A. Grothendieck (ed.), Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Springer-Verlag, Berlin, 1971, pp. 145–194.

  19. Higgins P.J.: ‘Algebras with a scheme of operators’. Math. Nachr. 27, 115–132 (1963)

    Article  Google Scholar 

  20. Jónsson B.: Topics in universal algebra. Springer-Verlag, Berlin-New York (1972)

    Google Scholar 

  21. Kleisli H.: ‘Every standard construction is induced by a pair of adjoint functors’. Proc. Amer. Math. Soc. 16, 544–546 (1965)

    Google Scholar 

  22. Lawvere, F.W., Functorial semantics of algebraic theories, Dissertation. Columbia University, U.S.A., 1963.

  23. Mac Lane S.: Categories for the working mathematician, 2nd ed. Springer, New York (1998)

    Google Scholar 

  24. Matthiessen, G., ‘Theorie der Heterogenen Algebren’, Mathematik-Arbeitspapiere, Nr. 3 (Dissertation), Universität Bremen, Germany 1976.

  25. Mayoh, B., Galleries and institutions, DAIMI PB-191, Department of Computer Science-Daimi, University of Aarhus (January 1985).

  26. Meseguer, J., General logics, in H. D. Ebbinghaus et alii. (eds.), Logic Colloquium’ 87, North-Holland, Amsterdam, 1989, pp. 275–329.

  27. Pawlowski, W., ‘Context institutions’, in M. Haveraaen et alii. (eds.), Recent trends in data Type specification (Oslo, Norway, 1995), Springer, Berlin, 1996, pp. 436–457.

  28. Poigné, A., ‘Foundations are rich institutions, but institutions are poor foundations’, in H. Ehrig et alii. (eds.), Categorical methods in computer science (Berlin, 1988), Springer, Berlin (1989), pp. 82–101.

  29. Schmidt, J., ‘Algebraic operations and algebraic independence in algebras with infinitary operations’, Math. Japon., 6 (1961/62), 77–112.

    Google Scholar 

  30. Tarlecki A., Burstall R., Goguen J.: ‘Some fundamental algebraic tools for the semantics of computation: Part 3. Indexed categories’. Theoretical Computer Science 91, 239–264 (1991)

    Article  Google Scholar 

  31. Tarski A., Vaught R.L.: ‘Arithmetical extensions of relational systems’. Compositio Math. 13, 81–102 (1957)

    Google Scholar 

  32. Wolter, U., M. Klar, R. Wessäly, and F. Cornelius, Four Institutions – A Unified Presentation of Logical Systems for Specification, Technical Report Bericht-Nr. 94–24, TU Berlin, Fachbereich Informatik, Germany, 1994.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Climent Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Climent Vidal, J., Soliveres Tur, J. A 2-categorial Generalization of the Concept of Institution. Stud Logica 95, 301–344 (2010). https://doi.org/10.1007/s11225-010-9268-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-010-9268-0

Keywords

Navigation