Studia Logica

, Volume 89, Issue 2, pp 163–186

Axiomatizing Relativistic Dynamics without Conservation Postulates

  • H. Andréka
  • J. X. Madarász
  • I. Németi
  • G. Székely
Article

DOI: 10.1007/s11225-008-9125-6

Cite this article as:
Andréka, H., Madarász, J.X., Németi, I. et al. Stud Logica (2008) 89: 163. doi:10.1007/s11225-008-9125-6

Abstract

A part of relativistic dynamics is axiomatized by simple and purely geometrical axioms formulated within first-order logic. A geometrical proof of the formula connecting relativistic and rest masses of bodies is presented, leading up to a geometric explanation of Einstein’s famous E = mc2. The connection of our geometrical axioms and the usual axioms on the conservation of mass, momentum and four-momentum is also investigated.

Keywords

axiomatizationrelativistic dynamicsfirst-order logicequivalence of mass and energyfoundation of relativity

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H. Andréka
    • 1
  • J. X. Madarász
    • 1
  • I. Németi
    • 1
  • G. Székely
    • 1
  1. 1.Alfréd Rényi Institute of Mathematics of the Hungarian Academy of SciencesBudapestHungary