Skip to main content
Log in

In silico studies of the magnetic octahedral B6 cluster—nitric oxide and [B6 –NO]–O2 interactions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

All-electron calculations based on density functional theory (DFT) for B6 , [B6–NO], and [B6–NO–O2] were done in gas and aqueous phases, in order to validate their feasibility as nanovehicle for drug delivery. The quantum descriptors reveal that the octahedral B6 cluster shows semiconductor and magnetic behavior, low chemical reactivity, and zero polarity. On the other hand, bonding of the NO molecule with the B6 cluster produces a complex where the physic-chemical properties do not suffer drastic alterations, except that the polarity increases and a reduction of the work function takes place. These results suggest that the new [B6–NO] cluster can be applied for some biological function. Furthermore, the interaction between [B6–NO] and O2 generates a geometric transition from octahedron to pentagonal bipyramid, where the NO molecule remains bonded and the O2 molecule is activated in such superoxide cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grimes RN (2004) J Chem Edu 81:657

    Article  CAS  Google Scholar 

  2. Drummond ML, Meunier V, Sumpter BG (2007) J Phys Chem A 111:6539

    Article  CAS  Google Scholar 

  3. Sergeeva AP, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang LS, Boldyre AI (2014) Acc Chem Res 47:1349

    Article  CAS  Google Scholar 

  4. Hayami W, Shigeki Otani S (2011) J Phys Chem A 115:8204

    Article  CAS  Google Scholar 

  5. ĎorĎovič V, Tošner Z, Uchman M, Zhigunov A, Reza M, Ruokolainen J, Pramanik G, Cígler P, Kalíková K, Gradzielski M, Matějíček P (2016) Langmuir 32:6713

    Article  Google Scholar 

  6. Stoddart A (2014) Nature Chem 6:727

    Google Scholar 

  7. Mukherjee S, Thilagar P (2016) Chem Commun 52:1070

    Article  CAS  Google Scholar 

  8. Hosmane, N. S. Boron Science. New Technologies and Applications. CRC Press, Francis & Taylor Group 2012.

  9. Koshland Jr DE (1992) Science:258–1861

  10. Mohadger Y, Roller MB, Gillham JK (1973) J Appl Polym Sci 17:2635

    Article  CAS  Google Scholar 

  11. Aihara J (1978) J Am Chem Soc 100:3339

    Article  CAS  Google Scholar 

  12. Greatrex R, Greenwood NN, Millikan MB (1988) J Chem Soc Dalton Trans:2335

  13. Zdetsis AD (2008) Inorg Chem 47:8823

    Article  CAS  Google Scholar 

  14. Schwoch D, Don B, Burg AB, Beaudet IA (1979) J Phys Chem 83:1465

    Article  CAS  Google Scholar 

  15. Mckee ML (1989) J Phys Chem 93:3426

    Article  CAS  Google Scholar 

  16. Tian SX (2005) J Phys Chem A 109:6580

    Article  CAS  Google Scholar 

  17. Minyaev RM, Minkin VI, Gribanova TN, Starikov AG (2004) Russ Chem Bull, Int Edition 53:1159

    Article  CAS  Google Scholar 

  18. Hanley L, Anderson SL (1987) J Phys Chem 91:5161

    Article  CAS  Google Scholar 

  19. Hanley L, Whitten JL, Anderson SL (1988) J Phys Chem 92:5803

    Article  CAS  Google Scholar 

  20. Ray AK, Howard IA, Kanal KM (1992) Phys Rev B 45:–14247

  21. Kato H, Yamashita K, Morokuma K (1992) Chem Phys Lett 190:361

    Article  CAS  Google Scholar 

  22. Niu J, Rao BK, Jena P (1997) J Chem Phys 107:132

    Article  CAS  Google Scholar 

  23. Bonacic-Koutecky V, Fantucci P, Koutecky J (1991) Chem Rev 91:1035

    Article  CAS  Google Scholar 

  24. Garcia-Molina R, Heredia-Avalos S, Abril I (2000) J Phys Condens Matter 12:5519

    Article  CAS  Google Scholar 

  25. Boustani I (1994) Int J Quant Chem 52:1081

    Article  CAS  Google Scholar 

  26. Ricca A, Bauschlicher Jr CW (1997) J Chem Phys 106:2317

    Article  CAS  Google Scholar 

  27. Ricca A, Bauschlicher Jr CW (1996) Chem Phys:208–233

  28. Gillery C, Linguerri R, Rosmus P, Maier JP (2005) J Phys Chem 219:467

    CAS  Google Scholar 

  29. Li QS, Jin HW (2002) J Phys Chem A 106:7042

    Article  CAS  Google Scholar 

  30. Li QS, Jin Q, Luo Q, Tang AC, Yu JK, Zhang HX (2003) Int. J. Quant. Chem 94:269

    Article  CAS  Google Scholar 

  31. Ma J, Li Z, Fan K, Zhou M (2003) Chem Phys Lett 372:708

    Article  CAS  Google Scholar 

  32. Kawai R, Weare JH (1992) Chem Phys Lett 191:311

    Article  CAS  Google Scholar 

  33. Gu FL, Yang X, Tang AC, Jiao HJ, Schleyer PVR (1998) J Comput Chem 19:203

    Article  CAS  Google Scholar 

  34. Fowler JE, Ugalde JM (2000) J Phys Chem A 104:397

    Article  CAS  Google Scholar 

  35. Ba Tai T, Minh Tm N, Tho Nguyen M (2012) Theor Chem Accounts 131:1241

  36. Shinde R, Shukla A (2013) Eur Phys J D 67:98

    Article  Google Scholar 

  37. Butler AR, Wiliams DL (1993) Chem Soc Rev 22:233

    Article  CAS  Google Scholar 

  38. Moncada S, Palmer RMJ, Higgs EA (1991) Pharmacol Rev 43:109

    CAS  Google Scholar 

  39. Calver A, Collier J, Vallance P (1992) J Clin Invest 90(6):2548

    Article  CAS  Google Scholar 

  40. Durante W, Sen AK, Sunahara FA (1988) Br J Pharmacol 94:463

    Article  CAS  Google Scholar 

  41. Rees DD, Cellek S, Palmer RMJ, Moncada S (1990) BiochemBiophys Res Commun 173:541

  42. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Arch Biochem Biophys 288:481

    Article  CAS  Google Scholar 

  43. Tsuneda, T. Density functional theory in quantum chemistry. Springer: Japan, 2014.

  44. Gaussian 09, Revision C.01,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowskiand D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

  45. Heyd J, Scuseria G (2004) J Chem Phys 121:1187

    Article  CAS  Google Scholar 

  46. Heyd J, Scuseria GE (2004) J Chem Phys 120:7274

    Article  CAS  Google Scholar 

  47. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  48. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  49. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  50. Lu, H.; Liu, Z.; Yan, X.; Li, D.; Parent, L.; Tian, H. Sci. Rep. 2016, 6, 24366(1)–(11)

  51. Scrocco E, Tomasi J (1973) Top Curent Chem 42:95–170

    CAS  Google Scholar 

  52. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215

    Article  CAS  Google Scholar 

  53. de Mel A, Murad F, Seifalian AM (2011) Chem Rev 111:5742

    Article  Google Scholar 

  54. Li S. S. Semiconductor Physical Electronics, 2006, Second ed., Springer, USA

  55. Ati M, Özdogan C, Güven ZB (2007) Int J Quantum Chem 107:729

    Article  Google Scholar 

  56. Nguyen TQ, Sison Escaño MC, Kasai H (2010) J Phys Chem B 114:10017

    Article  CAS  Google Scholar 

  57. Chigo Anota E, Escobedo Morales A, Hernández Cocoletzi H, López y López JG (2015) Phys E 74:538

  58. Chigo Anota E, Cortes Arriagada D, Bautista Hernández A, Castro M (2017) Appl Surf Sci 400:283

    Article  Google Scholar 

  59. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by projects: VIEP-BUAP (CHAE-ING17-G) and Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177). We thank the support given by the National Laboratory Supercomputing Southeast housed in the BUAP. M. Castro acknowledges financial support provided by DGAPA-UNAM, Project PAPIIT IN-212315, and from Facultad de Química, UNAM, under the PAIP-FQ program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Chigo-Anota or M. Castro.

Electronic supplementary material

.

ESM 1

(DOC 5835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chigo-Anota, E., Salazar Villanueva, M., Valdez, S. et al. In silico studies of the magnetic octahedral B6 cluster—nitric oxide and [B6 –NO]–O2 interactions. Struct Chem 28, 1757–1764 (2017). https://doi.org/10.1007/s11224-017-0953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0953-8

Keywords

Navigation