Skip to main content
Log in

DFT studies on the acid-catalyzed Curtius reaction: the Schmidt reaction

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The Schmidt reaction is the acid-catalyzed analogue of the Curtius reaction and is extensively used in organic synthesis. In this work, the mechanism of this reaction has been explored using DFT calculations at the B3LYP/6-311+G(d,p) level. Protonated formyl azide may undergo rearrangement to the product, protonated isocyanic acid, with simultaneous extrusion of molecular nitrogen (concerted mechanism), or undergo rearrangement to the anti conformer, followed by removal of nitrogen to form the nitrenium ion, which then rearranges to the final product, protonated isocyanic acid (step-wise mechanism). Like the Curtius reaction, it is found that the concerted pathway is definitely preferred. The key role of acidification in decreasing the overall energy barrier is more highlighted in case of phenyl substitution, with negligible effect on the lower homologues. For methoxy and amine substituents, there is very little difference in the activation energies of the concerted and step-wise reactions, with the former being still slightly preferred. Unlike the parent compound, the rearrangement of substituted nitrenium ion in some cases involves side reactions like C-H insertion and cyclization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Scheme 4
Fig. 5

Similar content being viewed by others

References

  1. RA Abramovich, and P Kyba (1971) In: The chemistry of the azido group, S. Patai (Ed.); John Wiley and Sons, London, pp. 221–329

  2. PE Kyba (1984) In: Azides and nitrenes: reactivity and utility. E. F. V. Scriven (Ed.); Academic, Orlando, 2et seq

  3. Lang S, Murphy JA (2006) Chem Soc Rev 35:146–156

    Article  CAS  Google Scholar 

  4. Schmidt RF (1924) Ber 57:704

    Google Scholar 

  5. PAS Smith (1963) In: Molecular rearrangements. P. de Mayo (Ed.); Interscience: New York, 507–558

  6. Wolff H (1946) Org Reactions 3:307–336

    Google Scholar 

  7. T. Laue, and A. Plagens, In: Named organic reactions, 2nd edition; John Wiley and Sons: Chichester, p. 320 (2005)

  8. Zabalov MV, Tiger RP (2010) J Mol Struc-Theochem 962:15–22

    Article  CAS  Google Scholar 

  9. Zabalov MV, Tiger RP (2012) Russ Chem Bull 61:1694–1704

    Article  CAS  Google Scholar 

  10. Chaturvedi D, Chaturvedi AK, Mishra N, Mishra V (2012) Org Biomol Chem 10:9148–9151

    Article  CAS  Google Scholar 

  11. S Grecian, and J Aubé (2010) In: Organic azides: syntheses and applications. S. Bräse, and K. Banert (Eds.); John Wiley and Sons, Ltd. New York, p. 192–310

  12. Lee HL, Aube J (2007) Tetrahedron 63:9007–9015

    Article  CAS  Google Scholar 

  13. Gutierrez O, Aubé J, Tantillo DJ, Org J (2012) Chem. 77:640–647

    CAS  Google Scholar 

  14. Curtius T (1890) Ber Dtsch Chem Ges 23:3023–3033

    Article  Google Scholar 

  15. Curtius T, Prakt J (1894) Chem. 50:275–294

    CAS  Google Scholar 

  16. Yukawa Y, Tsuno Y (1959) Bull Chem Soc Jpn 32:971–981

    Article  CAS  Google Scholar 

  17. Lewis FD, Saunders Jr WH (1967) J Am Chem Soc 89:645–647

    Article  CAS  Google Scholar 

  18. Newman MS, Gildenhorn HL, Am J (1948) Chem Soc 70:317–319

    Article  CAS  Google Scholar 

  19. Yukawa Y, Tsuno Y, Am J (1958) Chem Soc 80:6346–6350

    Article  CAS  Google Scholar 

  20. Abu-Eittah RH, Moustafa H, Al-Omar AM (2000) Chem Phys Lett 318:276–288

    Article  CAS  Google Scholar 

  21. Gritsan NP, Pritchina EA (2001) Mendeleev Commun 11:94–96

    Article  Google Scholar 

  22. Pritchina EA, Gritsan NP, Maltsev A, Bally T, Autrey T, Liu Y, Wang Y, Toscano JP (2003) Phys Chem Chem Phys 5:1010–1018

    Article  CAS  Google Scholar 

  23. V. I. Faustov, E. G. Baskir, and A. A. Biryukov, Russ. Chem. Bull. Int. Ed., 52, 2328–2333 (2003). (published also in Russian in Izv. Akad. Nauk., Ser. Kimicheskaya 11, 2203 (2003))

  24. Liu J, Mandel S, Hadad CM, Platz MS, Org J (2004) Chem 69:8583–8593

    CAS  Google Scholar 

  25. Mandel S, Liu J, Hadad CM, Platz MS, Phys J (2005) Chem. A 109:2816–2821

    CAS  Google Scholar 

  26. Zabalov MV, Tiger RP (2005) Russ. Chem. Bull. Int. Ed. 54:2270–2280

    Article  CAS  Google Scholar 

  27. Zabalov MV, Tiger RP (2007) Russ Chem Bull Int Ed 56:7–13

    Article  CAS  Google Scholar 

  28. Kakkar R, Zaidi S, Grover R (2009) Int J Quantum Chem 109:1058–1069

    Article  CAS  Google Scholar 

  29. Becke AD, Chem J (1988) Phys 88:2547–2553

    CAS  Google Scholar 

  30. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  33. Kohli E, Arora R, Kakkar R (2014) Can Chem Trans 2:327–342

    Article  Google Scholar 

  34. ED Glendening AE Reed, JE Carpenter, and F Weinhold (2003) NBO version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. Fox (2009) Gaussian, Inc.: Wallingford, CT

  36. Marenich AV, Cramer CJ, Truhlar DG, Phys J (2009) Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  37. Saielli G, Phys J (2010) Chem A 114:7261–7265

    CAS  Google Scholar 

  38. Kiplinger JP, Maynard AT, Bursey MM (1987) Org Mass Spectrom 22:534–540

    Article  CAS  Google Scholar 

  39. Ijjaali F, Alcamí M, Mó O, Yáñez M (2001) Mol Phys 99:1129–1137

    Article  CAS  Google Scholar 

  40. L. G. Wade Jr. (2009) In: Organic chemistry (7th edition); Prentice Hall, p. 183

Download references

Acknowledgements

The authors thank the University of Delhi’s “Scheme to Strengthen Doctoral Research by Providing Funds to Faculty.” One of the authors (RA) thanks the University Grants Commission (UGC) for a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Kakkar.

Ethics declarations

Ethical statement

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakkar, R., Arora, R. & Zaidi, S. DFT studies on the acid-catalyzed Curtius reaction: the Schmidt reaction. Struct Chem 28, 1743–1756 (2017). https://doi.org/10.1007/s11224-017-0952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0952-9

Keywords

Navigation