Skip to main content
Log in

Triel bonds-complexes of boron and aluminum trihalides and trihydrides with benzene

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Triel bond is an interaction of an atom of the 13th Group of periodic system that acts as a Lewis acid with an electron rich species; it is analyzed here in complexes of benzene with boron and aluminum trihalides and trihydrides. MP2/aug-cc-pVTZ calculations were performed for these complexes and the interactions were analyzed with the use of Quantum Theory of “Atoms in Molecules.” It was found that benzene acts as the Lewis base not through a π-electron system but through one of carbon centers that is characterized by the most negative charge if compared with other carbon atoms of benzene. Thus, the B…C and Al…C bond paths are analyzed which correspond to preferable interactions; for some of complexes, the additional halogen (X)–carbon, X…C, intermolecular bond paths exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scheiner S (ed) (1997) Molecular interactions. From van der Waals to strongly bound complexes. Wiley, Chichester

    Google Scholar 

  2. Schneider H-J (2009) Binding mechanisms in supramolecular chemistry. Angew Chem Int Ed 48:3924

    Article  CAS  Google Scholar 

  3. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions, theory and experiment. Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge

    Google Scholar 

  4. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  5. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178

    Article  CAS  Google Scholar 

  6. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278

    Article  CAS  Google Scholar 

  7. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541

    Article  CAS  Google Scholar 

  8. Grabowski SJ (2014) Boron and other triel Lewis acid centers: from hypovalency to hypervalency. ChemPhysChem 15:2985

    Article  CAS  Google Scholar 

  9. Grabowski SJ (2015) π-Hole bonds: boron and aluminum Lewis acid centers. ChemPhysChem 16:1470

    Article  CAS  Google Scholar 

  10. Grabowski SJ (2015) Triel bonds, π-hole-π-electrons interactions in complexes of boron and aluminium trihalides and trihydrides with acetylene and ethylene. Molecules 20:11297

    Article  CAS  Google Scholar 

  11. Bhunya S, Malakar T, Ganguly G, Paul A (2016) Combining protons and hydrides by homogeneous catalysis for controlling the release of hydrogen from ammonia-borane: present status and challenges. ACS Catal 6:7907

    Article  CAS  Google Scholar 

  12. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) B-N compounds for chemical hydrogen storage. Chem Soc Rev 38:279

    Article  CAS  Google Scholar 

  13. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York, p. 165

    Google Scholar 

  14. Smith EL, Sadowsky D, Cramer CJ, Phillips JA (2011) Structure, bonding, and energetic properties of nitrile-borane complexes: RCN-BH3. J Phys Chem A 115:1955

    Article  CAS  Google Scholar 

  15. Hiberty PC, Ohanessian G (1982) Comparison of minimal and extended basis sets in terms of resonant formulas. Application to 1,3 dipoles. J Am Chem Soc 104:66

    Article  CAS  Google Scholar 

  16. Brinck T, Murray JS, Politzer P (1993) A computational analysis of the bonding in boron trifluoride and boron trichloride and their complexes with ammonia. Inorg Chem 32:2622

    Article  CAS  Google Scholar 

  17. Kutzelnigg W (1984) Chemical bonding in higher main group elements. Angew Chem Int Ed 23:272

    Article  Google Scholar 

  18. Rowsell BD, Gillespie RJ, Heard GL (1999) Ligand close-packing and the Lewis acidity of BF3 and BCl3. Inorg Chem 38:4659

    Article  CAS  Google Scholar 

  19. Bessac F, Frenking G (2003) Why is BCl3 a stronger Lewis acid with respect to strong bases than BF3. Inorg Chem 42:7990

    Article  CAS  Google Scholar 

  20. Fau S, Frenking G (1999) Theoretical investigation of the weakly bonded donor-acceptor complexes X3B-H2, X3B-C2H4 and X3B-C2H2 (X = H, F, Cl). Mol Phys 96:519

    CAS  Google Scholar 

  21. Phillips JA, Giesen DJ, Wells NP, Halfen JA, Knutson CC, Wrass JP (2005) Condensed-phase effects on the structural properties of C6H5CN-BF3 and (CH3)3CCN-BF3: IR spectra, crystallography, and computations. J Phys Chem A 109:8199

    Article  CAS  Google Scholar 

  22. Phillips JA, Cramer CJ (2005) Quantum chemical characterization of the structural and energetic properties of HCN-BF3. J Chem Theory Comput 1:827

    Article  CAS  Google Scholar 

  23. Smith EL, Sadowsky D, Phillips JA, Cramer CJ, Giesen DJ (2010) A short yet very weak dative bond: structure, bonding, and energetic properties of N2-BH3. J Phys Chem A 114:2628

    Article  CAS  Google Scholar 

  24. Tarakeshwar P, Lee JY, Kim KS (1988) Role of Lewis acid (AlCl3)–aromatic ring interactions in Friedel-Craft’s reaction: an ab initio study. J Phys Chem A 102:2253

    Article  Google Scholar 

  25. Goldfuss B, Knochel P, Bromm LO, Knapp K (2000) C-H activation by direct borane–hydrocarbon dehydrogenation: kinetic and thermodynamic aspects. Angew Chem Int Ed 39:4136

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford

  27. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618

    Article  Google Scholar 

  28. Woon DE, Dunning Jr TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The second row atoms, Al-Ar. J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  29. Piela L (2007) Ideas of quantum chemistry. Elsevier Science Publishers, Amsterdam, pp 684–691

    Google Scholar 

  30. Grabowski SJ, Sokalski WA (2005) Different types of hydrogen bonds: correlation analysis of interaction energy components. J Phys Org Chem 18:779

    Article  CAS  Google Scholar 

  31. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553

    Article  CAS  Google Scholar 

  32. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  33. Cremer D, Kraka E (1984) A description of the chemical-bond in terms of local properties of electron-density and energy. Croat Chem Acta 57:1259

    Google Scholar 

  34. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97

    Article  CAS  Google Scholar 

  35. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103:304

    Article  CAS  Google Scholar 

  36. Fradera X, Poater J, Simon S, Duran M, Solà M (2002) The calculation of electron localization and delocalization indices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory. Theor Chem Accounts 107:362

    Article  Google Scholar 

  37. Todd A, Keith TK (2011) AIMAll (Version 11.08.23). Gristmill Software, Overland Park KS (aim.tkgristmill.com)

    Google Scholar 

  38. Tarakeshwar P, Lee SJ, Lee JY, Kim KS (1999) Ab initio study of benzene–BX3 (X = H, F, Cl) interactions. J Phys Chem B 103:184

    Article  CAS  Google Scholar 

  39. Olivares del Valle FJ, Tolosa S, Ojalvo EA, Espinosa J (1988) A proposal for avoiding overestimation of the counterpoise basis set superposition error. Application to diatomic van der Waals systems. Chem Phys 127:343

    Article  CAS  Google Scholar 

  40. Parthasarathi R, Subramanian V, Sathyamurthy N (2006) Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A 110:3349

    Article  CAS  Google Scholar 

  41. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111:2597

    Article  CAS  Google Scholar 

  42. Gillespie RJ, Popelier PLA (2001) Chemical bonding and molecular geometry. Oxford University Press, Oxford

    Google Scholar 

  43. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  44. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391

    Article  CAS  Google Scholar 

  45. Grabowski SJ, Ugalde JM (2010) Bond paths show preferable interactions: ab initio and QTAIM studies on the X-H· · ·π hydrogen bond. J Phys Chem A 114:7223

    Article  CAS  Google Scholar 

  46. Matta CF, Huang L, Massa L (2011) Characterization of a trihydrogen bond on the basis of the topology of the electron density. J Phys Chem A 115:12451

    Article  CAS  Google Scholar 

  47. Jonas V, Frenking G, Reetz MT (1994) Comparative theoretical study of Lewis acid-base complexes of BH3, BF3, BCl3, AlCl3, and SO2. J Am Chem Soc 116:8741

    Article  CAS  Google Scholar 

  48. van der Veken BJ, Sluyts EJ (1997) Reversed Lewis acidity of mixed boron halides: an infrared study of the van der Waals complexes of BF x Cl y with CH3F in Cryosolution. J Am Chem Soc 119:11516

    Article  Google Scholar 

  49. Giesen DJ, Phillips JA (2003) Structure, bonding, and Vibrational frequencies of CH3CN-BF3: new insight into medium effects and the discrepancy between the experimental and theoretical geometries. J Phys Chem A 107:4009

    Article  CAS  Google Scholar 

  50. Phillips JA, Cramer CJ (2007) B-N distance potential of CH3CN-BF3 revisited: resolving the experiment-theory structure discrepancy and Modeling the effects of low-dielectric environments. J Phys Chem B 111:1408

    Article  CAS  Google Scholar 

  51. Wrass JP, Sadowsky D, Bloomgren KM, Cramer CJ, Phillips JA (2014) Quantum chemical and matrix-IR characterization of CH3CN-BCl3: a complex with two distinct minima along the B-N bond potential. Phys Chem Chem Phys 16:16480

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support comes from Eusko Jaurlaritza (GIC IT-588-13) and the Spanish Office for Scientific Research (CTQ2012-38496-C05-04). Technical and human support provided by Informatikako Zerbitzu Orokora - Servicio General de Informática de la Universidad del País Vasco (SGI/IZO-SGIker UPV/EHU), Ministerio de Ciencia e Innovación (MICINN), Gobierno Vasco Eusko Jaurlanitza (GV/EJ), European Social Fund (ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir J. Grabowski.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 3503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabowski, S.J. Triel bonds-complexes of boron and aluminum trihalides and trihydrides with benzene. Struct Chem 28, 1163–1171 (2017). https://doi.org/10.1007/s11224-017-0927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0927-x

Keywords

Navigation