Skip to main content
Log in

Looking at aniline-phenol recognition in molecular crystals: an evergreen endeavour

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This retrospect describes research in our group in the University of Hyderabad and in the Indian Institute of Science, Bangalore over a period of 25 years on a topic in structural chemistry that has been both intriguing and invigorating. The theme of hydrogen bond-based amine-hydroxy recognition in organic crystals is cast against an overall background of developments in crystal engineering from the early 1990s up to the present time. This article is divided into two parts: the first is a somewhat autobiographical and sometimes informal account of how and why various things were done over the years, while the second takes the form of a current result-oriented study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Plate 1
Plate 2
Plate 3
Fig. 5
Fig. 6
Scheme 4
Scheme 5
Fig. 7
Fig. 8
Fig. 9
Scheme 6
Fig. 10
Scheme 7
Fig. 11
Fig. 12
Scheme 8
Fig. 13
Plate 4
Scheme 9
Scheme 10
Scheme 11
Fig. 14
Plate 5
Scheme 12
Fig. 15
Scheme 13
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Desiraju GR (1989) Crystal engineering: the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  2. Powell HM, Riesz P (1948) Beta-quinol: an example of the firm union of molecules without the formation of chemical bonds between them. Nature 161(4080):52–53

    Article  CAS  Google Scholar 

  3. Ubbelohde AR, Robertson JM (1937) A new form of resorcinol. Nature 140(3536):239–239

    Article  CAS  Google Scholar 

  4. Robertson JM (1953) Organic crystals and molecules. Cornell University Press, London

    Google Scholar 

  5. Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23(4):120–126

    Article  CAS  Google Scholar 

  6. Desiraju GR (2007) Crystal engineering: a holistic view. Angew Chem 46(44):8342–8356

    Article  CAS  Google Scholar 

  7. Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New York

    Google Scholar 

  8. Zorkii PM, Zorkaya ON (1998) Ordinary organic crystal chemistry. Interpretation of the most probable homomolecular structures. J Struct Chem 39(1):103–124

    Article  CAS  Google Scholar 

  9. Leiserowitz L, Schmidt GMJ (1969) Molecular packing modes. Part III. Primary amides. J Chem Soc A (0):2372–2382

  10. Leiserowitz L (1976) Molecular packing modes. Carboxylic acids. Acta Crystallogr B 32(3):775–802

    Article  Google Scholar 

  11. Leiserowitz L, Nader F (1977) The molecular packing modes and the hydrogen-bonding properties of amide:dicarboxylic acid complexes. Acta Crystallogr B 33(9):2719–2733

    Article  Google Scholar 

  12. Ramakrishnan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations. Biophys J 5(6):909–933

    Article  CAS  Google Scholar 

  13. Desiraju GR (1995) Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem 34(21):2311–2327

    Article  CAS  Google Scholar 

  14. Allen FH, Hoy VJ, Howard JAK, Thalladi VR, Desiraju GR, Wilson CC, McIntyre GJ (1997) Crystal engineering and correspondence between molecular and crystal structures. Are 2- and 3-aminophenols anomalous? J Am Chem Soc 119(15):3477–3480

    Article  CAS  Google Scholar 

  15. Vangala VR, Desiraju GR, Jetti RKR, Bläser D, Boese R (2002) A 1:1 molecular complex of bis(4-aminophenyl) disulfide and 4-aminothiophenol. Acta Crystallogr B 58(10):o635–o636

    Google Scholar 

  16. Vangala VR, Bhogala BR, Dey A, Desiraju GR, Broder CK, Smith PS, Mondal R, Howard JA, Wilson CC (2003) Correspondence between molecular functionality and crystal structures. Supramolecular chemistry of a family of homologated aminophenols. J Am Chem Soc 125(47):14495–14509

    Article  CAS  Google Scholar 

  17. Bhogala BR, Vangala VR, Smith PS, Howard JAK, Desiraju GR (2004) A novel saturated hydrogen bridge architecture in supraminols. Cryst Growth Des 4(4):647–649

    Article  CAS  Google Scholar 

  18. Dey A, Desiraju GR, Mondal R, Howard JA (2004) Crystal engineering in the aminophenols. Novel carborundum network in a supramolecular homologous series. Chem Commun 10(22):2528–2529

    Article  Google Scholar 

  19. Jetti RK, Boese R, Thakur TS, Vangala VR, Desiraju GR (2004) Proton transfer and N(+)-H···S(−) hydrogen bonds in the crystal structure of 4-aminothiophenol. Chem Commun 22:2526–2527

    Article  Google Scholar 

  20. Dey A, Kirchner MT, Vangala VR, Desiraju GR, Mondal R, Howard JA (2005) Crystal structure prediction of aminols: advantages of a supramolecular synthon approach with experimental structures. J Am Chem Soc 127(30):10545–10559

    Article  CAS  Google Scholar 

  21. Vangala VR, Mondal R, Broder CK, Howard JAK, Desiraju GR (2005) Dianiline-diphenol molecular complexes based on supraminol recognition. Cryst Growth Des 5(1):99–104

    Article  CAS  Google Scholar 

  22. Dey A, Desiraju GR (2006) Dimorphs of 4′-amino-4-hydroxy-2′-methylbiphenyl: assessment of likelihood of polymorphism in flexible molecules. CrystEngComm 8(6):477

    Article  CAS  Google Scholar 

  23. Dey A, Pati NN, Desiraju GR (2006) Crystal structure prediction with the supramolecular synthon approach: experimental structures of 2-amino-4-ethylphenol and 3-amino-2-naphthol and comparison with prediction. CrystEngComm 8(10):751

    Article  CAS  Google Scholar 

  24. Mukherjee A, Dixit K, Sarma SP, Desiraju GR (2014) Aniline-phenol recognition: from solution through supramolecular synthons to cocrystals. IUCrJ 1(Pt 4):228–239

    Article  CAS  Google Scholar 

  25. Ermer O, Eling A (1994) Molecular recognition among alcohols and amines: super-tetrahedral crystal architectures of linear diphenol–diamine complexes and aminophenols. J Chem Soc Perkin Trans 2(5):925–944

    Article  Google Scholar 

  26. Hanessian S, Gomtsyan A, Simard M, Roelens S (1994) Molecular recognition and self-assembly by weak hydrogen bonding: unprecedented supramolecular helicate structures from diamine/diol motifs. J Am Chem Soc 116(10):4495–4496

    Article  CAS  Google Scholar 

  27. Desiraju GR (2003) Crystal and co-crystal. CrystEngComm 5(82):466

    Article  CAS  Google Scholar 

  28. Dunitz JD (2003) Crystal and co-crystal: a second opinion. CrystEngComm 5(91):506

    Article  CAS  Google Scholar 

  29. Moelwyn-Hughes EA (1961) Physical chemistry, 2nd edn. Pergamon, Oxford

    Google Scholar 

  30. Cox EG, Cruickshank DWJ, Smith JAS (1958) The crystal structure of benzene at −3° C. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 247(1248):1–21

    Article  CAS  Google Scholar 

  31. Trotter J (1961) The crystal and molecular structure of biphenyl. Acta Crystallogr 14(11):1135–1140

    Article  CAS  Google Scholar 

  32. Hargreaves A, Rizvi SH (1962) The crystal and molecular structure of biphenyl. Acta Crystallogr 15(4):365–373

    Article  CAS  Google Scholar 

  33. Bacon GE, Curry NA, Wilson SA (1964) A crystallographic study of solid benzene by neutron diffraction. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 279(1376):98–110

    Article  CAS  Google Scholar 

  34. Laxmi Madhavi NN, Bilton C, Howard JAK, Allen FH, Nangia A, Desiraju GR (2000) Seeking structural repetitivity in systems with interaction interference: crystal engineering in the gem-alkynol family. New J Chem 24(1):1–4

    Article  CAS  Google Scholar 

  35. Desiraju GR, Vittal JJ, Ramanan A (2011) Crystal engineering: a textbook. World Scientific, Singapore

    Book  Google Scholar 

  36. Mootz D, Brodalla D, Wiebcke M (1989) Structures of monoethanolamine (MEAM), diethanolamine (DEAM) and triethanolamine (TEAM). Acta Crystallogr C 45(5):754–757

    Article  Google Scholar 

  37. Meyers EA, Lipscomb WN (1955) The crystal structure of hydroxylamine. Acta Crystallogr 8(9):583–587

    Article  CAS  Google Scholar 

  38. Donohue J (1958) Hydrogen bonding in crystalline hydroxylamine. Acta Crystallogr 11(7):512–512

    Article  CAS  Google Scholar 

  39. Jerslev B (1958) Note on the hydrogen bonding in the crystal structure of hydroxylamine. Acta Crystallogr 11(7):511–511

    Article  CAS  Google Scholar 

  40. Toda F, Hyoda S, Okada K, Hirotsu K (1995) Isolation of anhydrous hydrazine as stable inclusion complexes with hydroquinone and p-methoxyphenol, and their solid state reaction with esters which gives pure hydrazides. J Chem Soc Chem Commun 15:1531

    Article  Google Scholar 

  41. Hanessian S, Simard M, Roelens S (1995) Molecular recognition and self-assembly by non-amidic hydrogen bonding. An exceptional assembler of neutral and charged supramolecular structures. J Am Chem Soc 117(29):7630–7645

    Article  CAS  Google Scholar 

  42. Loehlin JH, Franz KJ, Gist L, Moore RH (1998) Supramolecular alcohol–amine crystals and their hydrogen-bond patterns. Acta Crystallogr B 54(5):695–704

    Article  Google Scholar 

  43. Roelens S, Dapporto P, Paoli P (2000) Hydrogen bonded supramolecular structures: a further insight into the diamine-diol recognition and self-assembly. Can J Chemistry 78(6):723–731

    Article  CAS  Google Scholar 

  44. Hanessian S, Saladino R, Margarita R, Simard M (1999) Supramolecular chirons based on enantiodifferentiating self-assembly between amines and alcohols (supraminols). Chem Eur J 5(7):2169–2183

    Article  CAS  Google Scholar 

  45. Nangia A (2000) Supramolecular chirons. Curr Sci India 78(4):375

    Google Scholar 

  46. de Rango C, Brunie S, Tsoucaris G, Declercq JP, Germain G (1974) Meta-aminophenol, C6H7NO. Cryst Struct Commun 3:485

    Google Scholar 

  47. Korp JD, Bernal I, Aven L, Mills JL (1981) A redetermination of the crystal structure of 2-aminophenol. J Cryst Mol Struct 11(5–6):117–124

    Article  CAS  Google Scholar 

  48. Viswamitra MA, Radhakrishnan R, Bandekar J, Desiraju GR (1993) Evidence for O-H···C and N-H···C hydrogen bonding in crystalline alkynes, alkenes, and aromatics. J Am Chem Soc 115(11):4868–4869

    Article  CAS  Google Scholar 

  49. Desiraju GR (1991) The C-H···O hydrogen bond in crystals: what is it? Acc Chem Res 24(10):290–296

    Article  CAS  Google Scholar 

  50. Desiraju GR (1996) The C-H···O hydrogen bond: structural implications and supramolecular design. Acc Chem Res 29(9):441–449

    Article  CAS  Google Scholar 

  51. Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without Borders. Acc Chem Res 35(7):565–573

    Article  CAS  Google Scholar 

  52. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  53. Madhavi NNL, Desiraju GR, Katz AK, Carrell HL, Nangia A (1997) Evidence for the characterisation of the C–H···π interaction as a weak hydrogen bond: toluene and chlorobenzene solvates of 2,3,7,8-tetraphenyl-1,9,10-anthyridine. Chem Commun 20:1953

    Article  Google Scholar 

  54. Kitaigorodskii AI (1984) Mixed crystals. Springer, New York

    Book  Google Scholar 

  55. Sarma JARP, Desiraju GR (2002) The supramolecular synthon approach to crystal structure prediction. Cryst Growth Des 2(2):93–100

    Article  CAS  Google Scholar 

  56. Loehlin JH, Etter MC, Gendreau C, Cervasio E (1994) Hydrogen-bond patterns in several 2:1 amine-phenol cocrystals. Chem Mater 6(8):1218–1221

    Article  CAS  Google Scholar 

  57. Kalman A, Pérkanyi L (1997) A tool to estimate the complementarity of homo- and heteromolecular associates. Advances in molecular structure research 3:189

    Article  CAS  Google Scholar 

  58. Fábián L, Kálmán A (1999) Volumetric measure of isostructurality. Acta Crystallogr B 55(6):1099–1108

    Article  Google Scholar 

  59. Desiraju GR (2013) Crystal engineering: from molecule to crystal. J Am Chem Soc 135(27):9952–9967

    Article  CAS  Google Scholar 

  60. Peacor D, Buerger M (1962) Determination and refinement of structure of narsarsukite Na2TiOSi4O10. J Am Mineral 47:539–556

    CAS  Google Scholar 

  61. Ribeiro FR, Rodrigues AE, Rollmann LD, Naccache C (1984) Zeolites: science and technology. NATO ASI Series, Boston

    Book  Google Scholar 

  62. Verma AR, Krishna P (1966) Polytypism and polymorphism in crystals. Wiley, New York

    Google Scholar 

  63. Thakur TS, Dubey R, Desiraju GR (2015) Crystal structure and prediction. Annu Rev Phys Chem 66:21–42

    Article  CAS  Google Scholar 

  64. Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, Bygrave PJ, Bylsma R, Campbell JE, Car R, Case DH, Chadha R, Cole JC, Cosburn K, Cuppen HM, Curtis F, Day GM, DiStasio Jr RA, Dzyabchenko A, van Eijck BP, Elking DM, van den Ende JA, Facelli JC, Ferraro MB, Fusti-Molnar L, Gatsiou CA, Gee TS, de Gelder R, Ghiringhelli LM, Goto H, Grimme S, Guo R, Hofmann DW, Hoja J, Hylton RK, Iuzzolino L, Jankiewicz W, de Jong DT, Kendrick J, de Klerk NJ, Ko HY, Kuleshova LN, Li X, Lohani S, Leusen FJ, Lund AM, Lv J, Ma Y, Marom N, Masunov AE, McCabe P, McMahon DP, Meekes H, Metz MP, Misquitta AJ, Mohamed S, Monserrat B, Needs RJ, Neumann MA, Nyman J, Obata S, Oberhofer H, Oganov AR, Orendt AM, Pagola GI, Pantelides CC, Pickard CJ, Podeszwa R, Price LS, Price SL, Pulido A, Read MG, Reuter K, Schneider E, Schober C, Shields GP, Singh P, Sugden IJ, Szalewicz K, Taylor CR, Tkatchenko A, Tuckerman ME, Vacarro F, Vasileiadis M, Vazquez-Mayagoitia A, Vogt L, Wang Y, Watson RE, de Wijs GA, Yang J, Zhu Q, Groom CR (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr B 72(Pt 4):439–459

    Article  CAS  Google Scholar 

  65. Ganguly P, Desiraju GR (2010) Long-range synthon Aufbau modules (LSAM) in crystal structures: systematic changes in C6H6 − nFn(0 ≤ n ≤ 6) fluorobenzenes. CrystEngComm 12(3):817–833

    Article  CAS  Google Scholar 

  66. Kitaigorodskii AI (1961) Organic chemical crystallography. Consultants Bureau, New York

    Google Scholar 

  67. Dubey R, Mir NA, Desiraju GR (2016) Quaternary cocrystals: combinatorial synthetic strategies based on long-range synthon Aufbau modules (LSAM). IUCrJ 3(Pt 2):102–107

    Article  CAS  Google Scholar 

  68. Mir NA, Dubey R, Desiraju GR (2016) Four- and five-component molecular solids: crystal engineering strategies based on structural inequivalence. IUCrJ 3(Pt 2):96–101

    Article  CAS  Google Scholar 

  69. Desiraju GR (2002) Stimulating concepts in chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  70. Banerjee R, Bhatt PM, Kirchner MT, Desiraju GR (2005) Structural studies of the system Na(saccharinate)n H2O: a model for crystallization. Angew Chem 44(17):2515–2520

    Article  CAS  Google Scholar 

  71. Mukherjee A, Desiraju GR (2011) Halogen bonding and structural modularity in 2,3,4- and 3,4,5-trichlorophenol. Cryst Growth Des 11(9):3735–3739

    Article  CAS  Google Scholar 

  72. Desiraju GR (2005) Chemistry—the middle kingdom. Curr Sci India 88(3):374–380

    Google Scholar 

  73. Bhogala BR, Thallapally PK, Nangia A (2004) 1:2 and 1:1 Ag(I)-Isonicotinamide coordination compounds: five-fold interpenetrated CdSO4 network and the first example of (pyridine)N − Ag − O(amide) bonds. Cryst Growth Des 4(2):215–218

    Article  CAS  Google Scholar 

  74. SeethaLekshmi S, Guru Row TN (2011) Propensity of formation of zipper architectures vs. Lincoln log arrangement in solvated molecular complexes of melamine with hydroxybenzoic acids. CrystEngComm 13(15):4886

    Article  CAS  Google Scholar 

  75. Gunnam A, Suresh K, Ganduri R, Nangia A (2016) Crystal engineering of a zwitterionic drug to neutral cocrystals: a general solution for floxacins. Chem Commun 52(85):12610–12613

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of us (GRD) thanks the Department of Science and Technology and the Council of Scientific and Industrial Research for support of his research programs over the last few decades. We thank Dr. S. P. Gopi and Dr. M. Banik for their assistance in collecting X-ray data on the compounds reported here and solving and refining the structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam R. Desiraju.

Additional information

Dedicated to Prof. Alan L. Mackay on the occasion of his 90th birthday

Electronic supplementary material

ESM 1

(DOCX 2919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, A., Desiraju, G.R. Looking at aniline-phenol recognition in molecular crystals: an evergreen endeavour. Struct Chem 28, 173–199 (2017). https://doi.org/10.1007/s11224-016-0869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0869-8

Keywords

Navigation