Skip to main content
Log in

Bergman, Bergman-based and 63-atom nanoclusters in intermetallics

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, we apply the nanocluster method to analyze all known intermetallics containing two-shell nanoclusters with icosahedral core. Using the ToposPro program package, we have found all intermetallics with two-shell nanoclusters as building units or local configurations. We have analyzed in more details Bergman, Bergman-based and two types of icosahedral-based 63-atom nanoclusters, which have been discovered for the first time using the ToposPro nanoclustering procedure. Simplification of the nanocluster representations to their underlying nets revealed widespread topologies such as body-centered cubic (bcu-x), face-centered cubic (fcu) and hexagonal primitive (hex). We have performed topological analysis of these intermetallics in terms of local and overall binding of clusters. The statistical data on the chemical composition of the nanoclusters are presented; the ways of local binding of nanoclusters and the topology of the corresponding underlying nets are determined and classified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nyman H, Andersson S (1979) Acta Cryst A35:580–583

    Article  CAS  Google Scholar 

  2. Lord EA, Mackay AL, Ranganathan S (2006) New geometries for new materials. Cambridge University Press, Cambridge

    Google Scholar 

  3. Shevchenko V. Ya., Blatov V. A., Ilyushin G. D. (2009) Struct Chem 20: 975 − 982

  4. Blatov VA, Shevchenko AP, Proserpio DM (2014) Cryst Growth Des 14: 3576. http://topospro.com

  5. Blatov VA, Ilyushin GD, Proserpio DM (2010) Inorg Chem 49:1811–1818

    Article  CAS  Google Scholar 

  6. Pankova AA, Akhmetshina TG, Blatov VA, Proserpio DM (2015) Inorg Chem 54:6616–6630

    Article  CAS  Google Scholar 

  7. Blatov VA (2012) Struct Chem 23:955–963

    Article  CAS  Google Scholar 

  8. Steurer W, Deloudi S (2008) Acta Cryst A64:1–11

    Article  Google Scholar 

  9. Shevchenko VY, Blatov VA, Ilyushin GD (2013) Glass Phys Chem 39:229–234

    Article  CAS  Google Scholar 

  10. Belsky A, Hellenbrandt M, Karen VL, Luksch P (2002) Acta Cryst B58:364–369

    Article  CAS  Google Scholar 

  11. Villars P, Cenzual K (2009) Pearson’s crystal data crystal structure database for inorganic compounds (on CD-ROM). ASM International, Materials Park, OH

    Google Scholar 

  12. Frank-Cordier U, Cordier G, Schäfer H (1982) Z Naturforsch 37:119–127

    Google Scholar 

  13. Li B, Corbett JD (2003) Inorg Chem 42:8768–8772

    Article  CAS  Google Scholar 

  14. Van der Kraan AM, Buschow KHJ (1986) Phys B 138:55–62

    Article  Google Scholar 

  15. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) Acc Chem Res 41: 1782–1789. http://rcsr.anu.edu.au/

  16. Brandon JK, Pearson WB, Riley PW, Chieh C, Stokhuyzen R (1977) Acta Cryst B33:1088

    Article  CAS  Google Scholar 

  17. Komura Y, Sly WG, Shoemaker DP (1960) Acta Cryst 13:575

    Article  CAS  Google Scholar 

  18. Otto G (1968) Z Phys 215:323–334

    Article  CAS  Google Scholar 

  19. Cromer DT, Larson AC (1959) Acta Cryst 12:855–859

    Article  CAS  Google Scholar 

  20. Boulineau A, Joubert JM, Černy R (2006) J Solid State Chem 179:3385–3393

    Article  CAS  Google Scholar 

  21. Conrad M, Harbrecht B (2007) Philos Mag Lett 87:493–503

    Article  CAS  Google Scholar 

  22. Blatov VA, Ilyushin GD, Proserpio DM (2011) Inorg Chem 50:5714–5724

    Article  CAS  Google Scholar 

  23. Todorov E, Sevov SC (2000) J Solid State Chem 149:419–427

    Article  CAS  Google Scholar 

  24. Zhen-Chao D, Corbett DJ (1995) J Am Chem Soc 117:6447–6455

    Article  Google Scholar 

  25. Mizusaki S, Kawamura N, Taniguchi T, Nagata Y, Ozawa TC, Sato A, Noro Y, Samata HJ (2010) Magn Magn Mater 322:L19–L24

    Article  CAS  Google Scholar 

  26. Johnson I, Schablaske R, Tani B, Anderson K (1964) Trans Met Soc AIME 230:1485–1486

    CAS  Google Scholar 

  27. Tsai AP, Guo JQ, Abe E, Takakura H, Sato TJ (2000) Nature 408:537–538

    Article  CAS  Google Scholar 

  28. Gomez CP, Lidin S (2003) Phys Rev B 68:024203

    Article  Google Scholar 

  29. Takakura H, Gomez CP, Yamamoto A, De Boisieu M, Tsai AP (2007) Nat Mater 6:58–63

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Russian Government (Grant 14.B25.31.0005) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Blatov.

Additional information

Dedicated to academician Vladimir Ya. Shevchenko on the occasion of his 75th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1090 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmetshina, T.G., Blatov, V.A. Bergman, Bergman-based and 63-atom nanoclusters in intermetallics. Struct Chem 27, 1685–1692 (2016). https://doi.org/10.1007/s11224-016-0804-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0804-z

Keywords

Navigation