Skip to main content

Advertisement

Log in

Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Finite saturated regular carbon nanotubes (CNTs) are predicted to exhibit higher capacity as hydrogen storage media compared to unsaturated regular CNTs. In the present study, molecular hydrogen physisorption energies (MHPEs) for finite saturated and unsaturated bumpy defected CNTs were calculated by density functional theory (DFT-D3) methods at the B3LYP/6-31G(d) theory level, with rigorous inclusion of van der Waals interactions. The calculated MHPEs for both regular and bumpy defected armchair, chiral and zigzag CNTs with similar diameters and lengths, with and without nitrogen doping, were compared in terms of Eph/H2, defined as the MHPE per hydrogen molecule adsorbed inside the nanotube. For all studied systems, Eph/H2 increased with the number of physisorbed hydrogen molecules. Nitrogen doping of regular and bumpy CNTs resulted in an increase in the Eph/H2 values, with the exception of bumpy chiral nanotubes. The results of this study demonstrate that bumpy defects are important nanotube structural features whose effects depend on nanotube chirality. For instance, bumpy defects were beneficial for undoped and doped zigzag nanotubes, resulting in a decrease in Eph/H2 values for regular structures from 0.5 and 0.74 to 0.26 and 0.42 eV, respectively. By contrast, for doped armchair regular structures with an Eph/H2 value of 0.38 eV, bumpy defects increased Eph/H2 to 0.45 eV. These Eph/H2 values for bumpy doped armchair and the zigzag nanotubes are all within the range of 0.1–0.5 eV/H2 reported as ideal for reversible hydrogen storage under environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Chem Rev 115:327–394

    Article  Google Scholar 

  2. Yoosefian M, Barzgari Z, Yoosefian J (2014) Struct Chem 25(1):9

    Article  CAS  Google Scholar 

  3. Abdelhalim A, Abdellah A, Scarpa G, Lugli P (2014) Nanotechnology 25(5):5208. doi:10.1088/0957-4484/25/5/055208

    Article  Google Scholar 

  4. Bareket-Keren L, Hanein Y (2013) Front Neural Circuits 6:112. doi:10.3389/fncir.2012.00122

    Article  Google Scholar 

  5. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Science 339:535

    Article  Google Scholar 

  6. Bianco S (2011) Carbon nanotubes. From research to applications. InTech, Rijeka

    Book  Google Scholar 

  7. Marulanda JM (2010) Carbon nanotubes. InTech, Rijeka

    Google Scholar 

  8. Arsawang U, Saengsawang O, Rungrotmongkol T, Sornmee P, Wittayanarakul K, Remsungnen T, Hannongbua S (2011) J Mol Graph Model 29:591–596

    Article  CAS  Google Scholar 

  9. Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Biomaterials 33:1689–1698

    Article  CAS  Google Scholar 

  10. Tada K, Furuya S, Watanabe K (2001) Phys Rev B 63:155405

    Article  Google Scholar 

  11. Krishna R, Titus E, Salimian M, Okhay O, Rajendran S, Rajkumar A, Sousa JMG, Ferreira ALC, Campos-Gil J, Gracio J (2012) In: J Liu (ed) Hydrogen storage, chap 10. doi:10.5772/51238. ISBN 978-953-51-0731-6

  12. Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y, Yip S (2003) J Chem Phys 119:2376

    Article  CAS  Google Scholar 

  13. Bhatia SK, Myers AL (2006) Langmuir 22:1688–1700

    Article  CAS  Google Scholar 

  14. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386(6623):377–379

    Article  CAS  Google Scholar 

  15. Becher M, Haluska M, Hirscher M, Quintel A, Skakalova V, Dettlaff-Weglikovska U, Chen X, Hulman M, Choi Y, Roth S, Meregalli V, Parrinello M, Ströbel R, Jörissen L, Kappes MM, Fink J, Züttel A, Stepanek I, Bernier P (2003) C R Phys 4:1055–1062

    Article  CAS  Google Scholar 

  16. Züttel A (2003) Mater Today 6:24

    Article  Google Scholar 

  17. Alonso JA, Arellano JS, Molina LM, Rubio A, López MJ (2004) IEEE Trans Nanotechnol 3:304–310

    Article  Google Scholar 

  18. Ross DK (2006) Vacuum 80:1084–1089

    Article  CAS  Google Scholar 

  19. Zhang G, Qi P, Wang X, Lu Y, Mann D, Li X, Dai H (2006) J Am Chem Soc 128:6026–6027

    Article  CAS  Google Scholar 

  20. Bilic A, Gale JD (2008) J Phys Chem C 112:12568–12575

    Article  CAS  Google Scholar 

  21. Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376–7383

    Article  CAS  Google Scholar 

  22. Kaczmarek A, Dinadayalane TC, Lukaszewicz J, Leszczynski J (2007) Int J Quantum Chem 107:2211–2219

    Article  CAS  Google Scholar 

  23. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297(5582):787–792

    Article  CAS  Google Scholar 

  24. Orimo S, Züttel A, Schlapbach L, Majer G, Fukunaga T, Fujii H (2003) J Alloys Compd 356–357:716–719

    Article  Google Scholar 

  25. Han SS, Lee HM (2004) Carbon 42(11):2169–2177

    Article  CAS  Google Scholar 

  26. DOE targets for onboard hydrogen storage systems for light-duty vehicles. http://energy.gov/sites/prod/files/2015/01/f19/fcto_myrdd_table_onboard_h2_storage_systems_doe_targets_ldv.pdf. Accessed 27 Jan 2016; http://www.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf. Accessed 27 Jan 2016; http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html. Accessed 27 Jan 2016

  27. Charlier JC (2002) Acc Chem Res 35:1063–1069

    Article  CAS  Google Scholar 

  28. Contreras ML, Avila D, Alvarez J, Rozas R (2012) J Mol Graphs Model 38:389

    Article  Google Scholar 

  29. Contreras ML, Rozas R (2011) In: Bianco S (ed) Carbon nanotubes. From research to applications. Intech, Rijeka. http://www.intech.open.com/books/carbon-nanotubes-from-research-to-applications/nitrogen-containing-carbon-nanotubes-a-theoretical-approach

  30. Contreras ML, Cortés-Arriagada D, Villarroel I, Alvarez J, Rozas R (2014) Struct Chem 25:1045–1056

    Article  CAS  Google Scholar 

  31. Singh AK, Yakobson BI (2012) J Mater Sci 47:7356–7366

    Article  CAS  Google Scholar 

  32. Hamada N, Sawada S, Oshiyama A (1992) Phys Rev Lett 68(10):1579–1581

    Article  CAS  Google Scholar 

  33. HyperChem release 7.5. Hypercube Inc., Gainesville

  34. Jaguar version 8.1. Schrödinger LLC, New York, 2013

  35. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104

    Article  Google Scholar 

  36. Hujo W, Grimme S (2011) J Chem Theory Comput 7(12):3866–3871

    Article  CAS  Google Scholar 

  37. DiLabio GA, Koleini M, Torres E (2013) Theor Chem Acc 132:1389

    Article  Google Scholar 

  38. Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1155

    Article  CAS  Google Scholar 

  39. Contreras ML, Villarroel I, Rozas R (2015) Struct Chem 26(3):761–771. doi:10.1007/s11224-014-0535-y

    Article  CAS  Google Scholar 

  40. Zhao M, Xia Y, Lewis JP, Zhang RJ (2003) Appl Phys 94:2398

    Article  CAS  Google Scholar 

  41. Ho YW, Suen MC (2013) J Chem 2013:765243. doi:10.1155/2013/765243

    Google Scholar 

  42. Amaral SS, Campos PT, dos Santos JM, Fernandes LS, Martins MAP, Bonacorso HG, Zanatta N (2010) Open Crystallogr J 3:59–66

    Article  CAS  Google Scholar 

  43. Yao Y (2010) In: Marulanda JM (ed) Carbon nanotubes. InTech, Rijeka

    Google Scholar 

  44. Lochan RC, Head-Gordon M (2006) Phys Chem Chem Phys 8:1357–1370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Direction of Scientific and Technological Research DICYT-USACH Project no. 061642CF and by the Sociedad de Desarrollo Tecnológico SDT-USACH Project no. CIA 2981. In addition, the central cluster of the Faculty of Chemistry and Biology and the VRIDeI of the University of Santiago de Chile are acknowledged for allocating computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leonor Contreras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, M.L., Villarroel, I. & Rozas, R. Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubes. Struct Chem 27, 1479–1490 (2016). https://doi.org/10.1007/s11224-016-0767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0767-0

Keywords

Navigation