Skip to main content
Log in

Computational thermochemistry of C-nitroso compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular structure and thermodynamic stability of C-nitroso and dinitroso (azodioxide) compounds (CNC) have been studied by using high-level, composite, ab initio method (G4MP2) via the series of appropriate homodesmotic, dimerization reactions. The calculated reaction enthalpies and Gibbs free energies allowed us to estimate relative stability of dinitroso moiety and the role of substituents in thermodynamic stabilization of dinitroso group versus its monomeric precursor. The stability of dinitroso compounds is generally low as is indicated by large positive values for standard enthalpies of formation. The stabilization of the dinitroso group is much more pronounced in alkyl, alkenyl, or alkynyl derivatives than in the aromatic derivatives. The thermodynamic stability of E-stereoisomers of dinitroso compounds is generally larger than their Z-stereoisomer analogues. However, the difference in E/Z stereoisomer stability is quite small in aromatic dinitroso compounds. We have discussed the influence of substituents on the molecular geometry of the nitroso and dinitroso groups. We have also discussed the nature and strengths of solid-state forces pertaining to CNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Gowenlock BG, Richter-Addo GB (2004) Chem Rev 104:3315–3340 (and references cited therein)

    Article  CAS  Google Scholar 

  2. Gowenlock BG, Richter-Addo GB (2005) Chem Soc Rev 34:797–809 (and references cited therein)

    Article  CAS  Google Scholar 

  3. Vančik H (2013) Aromatic C-nitroso compounds. Springer, Heidelberg

    Google Scholar 

  4. Beaudoin D, Wuest JD (2016) Chem Rev 116:258–286

    Article  CAS  Google Scholar 

  5. Lee J-H, West AH, Richter-Addo GB (2002) Chem Rev 102:1019–1065 (and references cited therein)

    Article  CAS  Google Scholar 

  6. Gaussian 09, Revision D1, Frisch MG, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman, JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2013) Gaussian, Inc., Pittsburgh PA

  7. Curtiss LA, Redfern PC, Raghvachari K (2011) WIREs Comput Mol Sci 1:810–825

    Article  CAS  Google Scholar 

  8. Sadlej-Sosnowska N, Krygowski TM (2009) Chem Phys Lett 476:191–195

    Article  CAS  Google Scholar 

  9. Anandana K, Kolandaivel P, Kumaresan R, Gowenlock BG (2003) J Mol Struct Theochem 639:213–221 (ibid. (2004) 680: 149–157)

    Article  Google Scholar 

  10. Ejsmont K (2007) Pol J Chem 81:985–992

    CAS  Google Scholar 

  11. Glaser R, Murmann K, Barnes CL (1996) J Org Chem 61:1047–1058 (and references cited therein)

    Article  CAS  Google Scholar 

  12. Halasz I, Meštrović E, Čičak H, Mihalić Z, Vančik H (2005) J Org Chem 70:8461–8467 (ibid. (2004) 69: 4829–4834)

    Article  CAS  Google Scholar 

  13. Biljan I, Cvjetojević G, Smrečki V, Novak P, Mali G, Plavec J, Babić D, Mihalić Z, Vančik H (2010) J Mol Struct 979:22–26

    Article  CAS  Google Scholar 

  14. Knežević A, Medančić T, Milovac S, Biljan I, Halasz I, Vančik H (2011) Croat Chem Acta 84:21–24

    Google Scholar 

  15. Bibulić P, Rončević I, Varga K, Mihalić Z, Vančik H (2016) J Mol Struct 1104:85–90

    Article  Google Scholar 

  16. Young MA, Thomas CC, Zhang DY (2002) J Phys Chem A 106:3224–3229

    Article  CAS  Google Scholar 

  17. Martinez CR, Iverson BL (2012) Chem Sci 3:2191–2201

    Article  CAS  Google Scholar 

  18. Price SL (2014) Chem Soc Rev 43:2098–2111

    Article  CAS  Google Scholar 

  19. Stevens WR, Ruščić B, Baer T (2010) J Phys Chem A 114:13134–13145

    Article  CAS  Google Scholar 

  20. Pepekin VI, Lebedev VP, Balepin AA (1975) Lebedev Yu A. Dokl Akad Nauk SSSR 221:1118–1121

    CAS  Google Scholar 

Download references

Acknowledgments

I. N. thanks the Faculty of Science, Charles Sturt University, for the financial support of this work through the Seed Grant A105-954-639-3495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Novak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, I. Computational thermochemistry of C-nitroso compounds. Struct Chem 27, 1395–1401 (2016). https://doi.org/10.1007/s11224-016-0759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0759-0

Keywords

Navigation