Skip to main content
Log in

Computational study of the thermal decomposition of 2-methylbutyraldehyde and 2-pentanone through retro-ene reactions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, a theoretical study at the MP2/6-31G(d) level of the thermal decomposition retro-ene reaction of 2-methylbutyraldehyde was carried out at a pressure of 1.5 atm. and temperatures ranging from 1110 to 1190 K. The progress of the reaction has been followed by means of the Wiberg bond indices which in turn allowed the calculation of the reaction synchronicity. Transition state theory was used to calculate the theoretical rate constant at 1150 K which was compared with the previously reported experimental value at the same conditions. We found that both values show a close agreement. The obtained computational evidence allowed us to support a reaction mechanism which proceeds in two steps: the first one with the formation of ethylene and 1-propenol via a six-membered cyclic transition state and the second one involving keto-enol equilibrium of 1-propenol to propionaldehyde via a four-membered cyclic transition state. It was found that the reaction is a highly synchronous and concerted process. The results obtained for the thermolysis of 2-methylbutyraldehyde were compared with those obtained for the thermolysis of 2-pentanone. A comparison of our results with those reported for their corresponding β-hydroxy counterparts, 3-hydroxy-2-methylpropionaldehyde and 4-hydroxy-2-butanone has also been made. A study of the thermochemistry of the compounds involved in the reactions studied has been carried out at the G3 level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hutchings GJ, Hudson ID, Timms DG (1999) Catal Lett 61:219–224

    Article  CAS  Google Scholar 

  2. Aarthi R, Saranya R, Sankaran K (2014) Appl Microbiol Biotechnol 98:445–454

    Article  CAS  Google Scholar 

  3. Rosado-Reyes CM, Tsang W (2014) Int J Chem Kinet 46:285–293

    Article  CAS  Google Scholar 

  4. Paderes G, Jorgensen WDL (1992) J Org Chem 57:1904–1916

    Article  CAS  Google Scholar 

  5. Blades AT, Sandhu HS (1971) Int J Chem Kinet 3:187–193

    Article  CAS  Google Scholar 

  6. Tsang W (1978) Int J Chem Kinet 10:1119–1138

    Article  CAS  Google Scholar 

  7. Tsang W (1972) J Phys Chem 76:143–156

    Article  CAS  Google Scholar 

  8. Quijano J, Ruiz P, Notario R, Zapata E, Gaviria J (2014) Int J Chem Kinet 46:363–369

    Article  CAS  Google Scholar 

  9. López V, Quijano J, Luna S, Ruiz P, Rios D, Parra W, Zapata E, Gaviria J, Notario R (2013) Struct Chem 24:1811–1816

    Article  Google Scholar 

  10. Quijano J, David J, Sanchez C, Rincon E, Guerra D, Leon LA, Notario R, Abboud JL (2002) Mol Struct Theochem 580:201–205

    Article  CAS  Google Scholar 

  11. Henao D, Murillo J, Ruiz P, Quijano J, Mejía B, Castañeda L, Notario R (2012) J Phys Org Chem 25:883–887

    Article  CAS  Google Scholar 

  12. Murillo J, Henao D, Vélez E, Castaño C, Quijano J, Gaviria J, Zapata E (2012) Int J Chem Kinet 44:407–413

    Article  CAS  Google Scholar 

  13. Velez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, Zapata E, Alarcón G (2009) J Phys Org Chem 22:971–977

    Article  CAS  Google Scholar 

  14. Rodríguez-Linares D, Codorniu-Hernández E, Velez-Ortíz E, Murillo-López JA, Villegas-Bolaños PA, Quijano-Tobón J (2009) Mol Struct Theochem 902:41–48

    Article  Google Scholar 

  15. Zapata E, Gaviria J, Quijano J (2007) Int J Chem Kinet 39:92–96

    Article  CAS  Google Scholar 

  16. Chamorro E, Quijano J, Notario R, Sánchez C, León LA, Chuchani G (2003) Int J Quantum Chem 91:618–625

    Article  CAS  Google Scholar 

  17. Castillo N, Boyd R (2006) J Phys Chem A 110:8710–8718

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01, Gaussian Inc., Wallingford CT

  19. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  20. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theory Comput 6:2882–2887

    Article  Google Scholar 

  21. Hehre WJ, Radom L, Schleyer P, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  22. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  23. McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Books, Sausalito

    Google Scholar 

  24. Kenichi F (1970) J Phys Chem 74:4161–4163

    Article  Google Scholar 

  25. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  26. Reed AE, Weinhold FJ (1983) Chem Phys 78:4066–4073

    CAS  Google Scholar 

  27. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  28. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988) NBO version 3.1. Madison, WI

  29. Glasstone S, Laidler K, Eyring H (1941) The theory of rate processes, 1st edn. McGraw Hill, New York

    Google Scholar 

  30. Benson SW (1969) The foundations of chemical kinetics. McGraw-Hill, New York

    Google Scholar 

  31. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  32. Moyano A, Pericas MA, Valentí E (1989) J Org Chem 54:573–582

    Article  CAS  Google Scholar 

  33. Pedley JB (1994) Thermochemical data and structures of organic compounds, vol 1. Research Centre, College Station

    Google Scholar 

  34. Turecek FJ (1984) Chem Soc Chem Commun 20:1374–1375

    Article  Google Scholar 

  35. Turecek FJ, Havlas ZJ (1986) Org Chem 51:4066–4067

    Article  CAS  Google Scholar 

  36. Holmes JL, Lossing FP (1982) J Am Chem Soc 104:2648–2649

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the research funds provided by Universidad Nacional de Colombia, Vicerrectoría de investigación, under Project 201010015017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Ruiz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, P., Castro, M., López, S. et al. Computational study of the thermal decomposition of 2-methylbutyraldehyde and 2-pentanone through retro-ene reactions. Struct Chem 27, 1373–1381 (2016). https://doi.org/10.1007/s11224-016-0757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0757-2

Keywords

Navigation