Skip to main content

Advertisement

Log in

Theoretical investigation of the hydrogen bond interactions of methanol and dimethylamine with hydrazone and its derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The interactions between hydrogen bond donors (dimethylamine (DMA) and methanol (MeOH)) and acceptors (formaldehyde dimethylhydrazone, acetaldehyde N,N-dimethylhydrazone and N-nitrosodimethylamine) were theoretically investigated by DFT. The hydrogen bonding interactions were found on several bonding sites of the acceptors. The important properties of structure, binding energy, enthalpy of formation, Gibbs free energy of formation and equilibrium constant were investigated. Compared to the monomer, the DMA complexes show a small red shift of the NH-stretching vibrational transition but a significantly intensity enhancement. On the other hand, the MeOH complexes have a large red shift but a relatively small intensity enhancement of the OH-stretching transition. Atoms-in-molecules analysis revealed that several types of hydrogen bond interaction were present in the complexes. Since natural bond orbital analysis overestimated the effect of charge transfer, the more reliable localized molecular orbital energy decomposition analysis was performed and it shows that the major contribution to the total interaction energy is the electrostatic interaction. All these parameters suggest that the hydrogen bond donor strength of MeOH is substantially greater than DMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang R, Khalizov A, Wang L, Hu M, Xu W (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112(3):1957–2011. doi:10.1021/cr2001756

    Article  CAS  Google Scholar 

  2. Rosenfeld D, Sherwood S, Wood R, Donner L (2014) Climate effects of aerosol-cloud interactions. Science 343(6169):379–380. doi:10.1126/science.1247490

    Article  CAS  Google Scholar 

  3. Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen HE, Nieminen T, Petaja T, Sipila M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Jarvinen E, Aijala M, Kangasluoma J, Hakala J, Aalto PP, Paasonen P, Mikkila J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin RL III, Duplissy J, Vehkamaki H, Back J, Kortelainen A, Riipinen I, Kurten T, Johnston MV, Smith JN, Ehn M, Mentel TF, Lehtinen KEJ, Laaksonen A, Kerminen V-M, Worsnop DR (2013) Direct observations of atmospheric aerosol nucleation. Science 339(6122):943–946. doi:10.1126/science.1227385

    Article  CAS  Google Scholar 

  4. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environ Sci Technol 41(5):1514–1521. doi:10.1021/es072476p

    Article  CAS  Google Scholar 

  5. Zhang Q, Anastasio C, Jimemez-Cruz M (2002) Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern california. J Geophys Res. doi:10.1029/2001jd000870

    Google Scholar 

  6. Mathur MA, Sisler HH (1981) Oxidation of 1,1-dimethylhydrazine by oxygen. Inorg Chem 20(2):426–429. doi:10.1021/ic50216a021

    Article  CAS  Google Scholar 

  7. Lunn G, Sansone EB (1994) Oxidation of 1,1-dimethylhydrazine (UDMH) in aqueous solution with air and hydrogen peroxide. Chemosphere 29(7):1577–1590. doi:10.1016/0045-6535(94)90287-9

    Article  CAS  Google Scholar 

  8. Cao Y, Wang L, Zhang G-Y (2006) Analysis of impurities and oxidization products in hydrazine fuels by GC-MS. Chin J Anal Lab 25(12):62–64. doi:10.13595/j.cnki.issn1000-0720.2006.0362

    CAS  Google Scholar 

  9. Lazny R, Nodzewska A (2010) N, N-dialkylhydrazones in organic synthesis. From simple N, N-dimethylhydrazones to supported chiral auxiliaries. Chem Rev 110(3):1386–1434. doi:10.1021/cr900067y

    Article  CAS  Google Scholar 

  10. Belkheiri N, Bouguerne B, Bedos-Belval F, Duran H, Bernis C, Salvayre R, Nègre-Salvayre A, Baltas M (2010) Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur J Med Chem 45(7):3019–3026. doi:10.1016/j.ejmech.2010.03.031

    Article  CAS  Google Scholar 

  11. Radwan MAA, Ragab EA, Sabry NM, El-Shenawy SM (2007) Synthesis and biological evaluation of new 3-substituted indole derivatives as potential anti-inflammatory and analgesic agents. Bioorgan Med Chem 15(11):3832–3841. doi:10.1016/j.bmc.2007.03.024

    Article  CAS  Google Scholar 

  12. Kumar D, Maruthi Kumar N, Ghosh S, Shah K (2012) Novel bis(indolyl)hydrazide–hydrazones as potent cytotoxic agents. Bioorgan Med Chem Lett 22(1):212–215. doi:10.1016/j.bmcl.2011.11.031

    Article  CAS  Google Scholar 

  13. Effenberger K, Breyer S, Schobert R (2010) Modulation of doxorubicin activity in cancer cells by conjugation with fatty acyl and terpenyl hydrazones. Eur J Med Chem 45(5):1947–1954. doi:10.1016/j.ejmech.2010.01.037

    Article  CAS  Google Scholar 

  14. Kajal A, Bala S, Sharma N, Kamboj S, Saini V (2014) Therapeutic potential of hydrazones as anti-inflammatory agents. Int J Med Chem 2014:11. doi:10.1155/2014/761030

    Google Scholar 

  15. Mitch WA, Sharp JO, Trussell RR, Valentine RL, Alvarez-Cohen L, Sedlak DL (2003) N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review. Environ Eng Sci 20(5):389–404. doi:10.1089/109287503768335896

    Article  CAS  Google Scholar 

  16. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account (IUPAC technical report). Pure Appl Chem 83(8):1619–1636. doi:10.1351/pac-rep-10-01-01

    CAS  Google Scholar 

  17. Du L, Mackeprang K, Kjaergaard HG (2013) Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol-dimethylamine complex. Phys Chem Chem Phys 15(25):10194–10206. doi:10.1039/c3cp50243k

    Article  CAS  Google Scholar 

  18. Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43(40):5310–5324. doi:10.1002/anie.200301739

    Article  CAS  Google Scholar 

  19. Du L, Lane JR, Kjaergaard HG (2012) Identification of the dimethylamine-trimethylamine complex in the gas phase. J Chem Phys 136(18):184305. doi:10.1063/1.4707707

    Article  Google Scholar 

  20. Du L, Kjaergaard HG (2011) Fourier transform infrared spectroscopy and theoretical study of dimethylamine dimer in the gas phase. J Phys Chem A 115(44):12097–12104. doi:10.1021/jp206762j

    Article  CAS  Google Scholar 

  21. Howard DL, Kjaergaard HG (2006) Vapor phase near infrared spectroscopy of the hydrogen bonded methanol-trimethylamine complex. J Phys Chem A 110(31):9597–9601. doi:10.1021/jp061547o

    Article  CAS  Google Scholar 

  22. Jovan Jose KV, Gadre SR, Sundararajan K, Viswanathan KS (2007) Effect of matrix on IR frequencies of acetylene and acetylene-methanol complex: infrared matrix isolation and ab initio study. J Chem Phys 127(10):104501. doi:10.1063/1.2752159

    Article  Google Scholar 

  23. Nedic M, Wassermann TN, Larsen RW, Suhm MA (2011) A combined raman- and infrared jet study of mixed methanol-water and ethanol-water clusters. Phys Chem Chem Phys 13(31):14050–14063. doi:10.1039/c1cp20182d

    Article  CAS  Google Scholar 

  24. Howard DL, Kjaergaard HG (2008) Hydrogen bonding to divalent sulfur. Phys Chem Chem Phys 10(28):4113–4118. doi:10.1039/b806165c

    Article  CAS  Google Scholar 

  25. Hansen AS, Du L, Kjaergaard HG (2014) The effect of fluorine substitution in alcohol-amine complexes. Phys Chem Chem Phys 16(41):22882–22891. doi:10.1039/c4cp02500h

    Article  CAS  Google Scholar 

  26. Elm J, Bilde M, Mikkelsen KV (2013) Assessment of binding energies of atmospherically relevant clusters. Phys Chem Chem Phys 15(39):16442–16445. doi:10.1039/c3cp52616j

    Article  CAS  Google Scholar 

  27. Bork N, Du L, Reiman H, Kurten T, Kjaergaard HG (2014) Benchmarking ab initio binding energies of hydrogen-bonded molecular clusters based on FTIR spectroscopy. J Phys Chem A 118(28):5316–5322. doi:10.1021/jp5037537

    Article  CAS  Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88(6):899–926. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  29. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84(10):5687–5705. doi:10.1063/1.449928

    Article  CAS  Google Scholar 

  30. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131(1):014102. doi:10.1063/1.3159673

    Article  Google Scholar 

  31. Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theory Comput 9(8):3263–3266. doi:10.1021/ct400420r

    Article  CAS  Google Scholar 

  32. Parthasarathi R, Subramanian V, Sathyamurthy N (2006) Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A 110(10):3349–3351. doi:10.1021/jp060571z

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision d.01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  34. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  35. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13(14):6670–6688. doi:10.1039/c0cp02984j

    Article  CAS  Google Scholar 

  36. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  37. Hippler M (2005) Quantum-chemical study of CHCl3-SO2 association. J Chem Phys 123(20):204311. doi:10.1063/1.2121609

    Article  Google Scholar 

  38. Chung S, Hippler M (2006) Infrared spectroscopy of hydrogen-bonded CHCl3–SO2 in the gas phase. J Chem Phys 124(21):214316. doi:10.1063/1.2207617

    Article  Google Scholar 

  39. Simon S, Duran M, Dannenberg JJ (1999) Effect of basis set superposition error on the water dimer surface calculated at hartree–fock, møller–plesset, and density functional theory levels. J Phys Chem A 103(11):1640–1643. doi:10.1021/jp9842188

    Article  CAS  Google Scholar 

  40. Hippler M, Hesse S, Suhm MA (2010) Quantum-chemical study and FTIR jet spectroscopy of CHCl3–NH3 association in the gas phase. Phys Chem Chem Phys 12(41):13555–13565. doi:10.1039/c0cp00530d

    Article  CAS  Google Scholar 

  41. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928. doi:10.1021/cr00005a013

    Article  CAS  Google Scholar 

  42. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  43. Karabatsos GJ, Shapiro BL, Vane FM, Fleming JS, Ratka JS (1963) Structural studies by nuclear magnetic resonance. II. Aldehyde 2,4-dinitrophenylhydrazones. J Am Chem Soc 85(18):2784–2788. doi:10.1021/ja00901a025

    Article  CAS  Google Scholar 

  44. Karabatsos GJ, Vane FM, Taller RA, Hsi N (1964) Structural studies by nuclear magnetic resonance. VIII. Ring-substituted phenylhydrazones, semicarbazones, and thiosemicarbazones. J Am Chem Soc 86(16):3351–3357. doi:10.1021/ja01070a029

    Article  CAS  Google Scholar 

  45. Clarke LF, O’Sullivan F, Hegarty AF (1991) Photoisomerisation of (E)- to (Z)-N, N-dimethylhydrazones and thermal reversion. J Chem Soc Perkin Trans 2(11):1649–1652. doi:10.1039/p29910001649

    Article  Google Scholar 

  46. Ramanathan S, Lemal DM (2007) Conformational and configurational dynamics of a highly fluorinated hydrazone. J Org Chem 72(5):1566–1569. doi:10.1021/jo061945n

    Article  CAS  Google Scholar 

  47. Shvo Y, Nahlieli A (1970) Detection of thermal isomerization of hydrazones by NMR spectroscopy. Tetrahedron Lett 11(49):4273–4274. doi:10.1016/S0040-4039(00)89463-0

    Article  Google Scholar 

  48. Hansen AS, Du L, Kjaergaard HG (2014) Positively charged phosphorus as a hydrogen bond acceptor. J Phys Chem Lett 5(23):4225–4231. doi:10.1021/jz502150d

    Article  CAS  Google Scholar 

  49. Schrems O, Oberhoffer HM, Luck WA (1984) Hydrogen bonding in low-temperature matrices: 1. Proton donor abilities of fluoroalcohols. Comparative infrared studies of ROH O(CH3)2 complex formation in the gas phase, in CCl4 solution, and in solid argon. J Phys Chem 88(19):4335–4342. doi:10.1021/j150663a029

    Article  CAS  Google Scholar 

  50. Zhang Q, Du L (2016) Hydrogen bonding in the carboxylic acid–aldehyde complexes. Comput Theor Chem 1078:123–128. doi:10.1016/j.comptc.2016.01.007

    Article  CAS  Google Scholar 

  51. Curtiss LA, Blander M (1988) Thermodynamic properties of gas-phase hydrogen-bonded complexes. Chem Rev 88(6):827–841. doi:10.1021/cr00088a002

    Article  CAS  Google Scholar 

  52. Hagemeister FC, Gruenloh CJ, Zwier TS (1998) Density functional theory calculations of the structures, binding energies, and infrared spectra of methanol clusters. J Phys Chem A 102(1):82–94. doi:10.1021/jp963763a

    Article  CAS  Google Scholar 

  53. Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim Acta Mol Biomol Spectrosc 55(7–8):1585–1612. doi:10.1016/S1386-1425(98)00348-5

    Article  Google Scholar 

  54. Chojnowski J (1970) Triethylphosphine, triethylarsine, and triethylstibine as hydrogen-acceptors in hydrogen bonds II. The association with phenol and methanol. Bull Acad Polon Sci Ser Sci Chim 18:317–324

    CAS  Google Scholar 

  55. Épshtein LM, Ashkinadze LD, Gorelik SO, Gambaryan NP, Bochvar DA, Kazitsyna LA (1974) Peculiarities of the interaction of phosphorus with the aromatic ring and their consideration in connection with the problem of conjugation. Bull Acad Sci USSR Div Chem Sci 23(1):58–63. doi:10.1007/bf00922312

    Article  Google Scholar 

  56. Miller BJ, Du L, Steel TJ, Paul AJ, Soedergren AH, Lane JR, Henry BR, Kjaergaard HG (2012) Absolute intensities of NH-stretching transitions in dimethylamine and pyrrole. J Phys Chem A 116(1):290–296. doi:10.1021/jp209118p

    Article  CAS  Google Scholar 

  57. Slipchenko MN, Sartakov BG, Vilesov AF, Xantheas SS (2007) Study of NH stretching vibrations in small ammonia clusters by infrared spectroscopy in he droplets and ab initio calculations. J Phys Chem A 111(31):7460–7471. doi:10.1021/jp071279+

    Article  CAS  Google Scholar 

  58. Biswal HS, Wategaonkar S (2011) OH X (X = O, S) hydrogen bonding in tetrahydrofurane and tetrahydrothiophene. J Chem Phys 135(13):134306. doi:10.1063/1.3645107

    Article  Google Scholar 

  59. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  60. Sakaki S, Kato K, Miyazaki T, Musashi Y, Ohkubo K, Ihara H, Hirayama C (1993) Structures and binding energies of benzene–methane and benzene–benzene complexes. An ab initio scf/mp2 study. J Chem Soc Farad Trans 89(4):659–664. doi:10.1039/ft9938900659

    Article  CAS  Google Scholar 

  61. Koch U, Popelier P (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754. doi:10.1021/j100024a016

    Article  CAS  Google Scholar 

  62. Grabowski SJ (2004) Hydrogen bonding strength—measures based on geometric and topological parameters. J Phys Org Chem 17(1):18–31. doi:10.1002/poc.685

    Article  CAS  Google Scholar 

  63. Bushmarinov IS, Lyssenko KA, Antipin MY (2009) Atomic energy in the ‘atoms in molecules’ theory and its use for solving chemical problems. Russ Chem Rev 78(4):283–302. doi:10.1070/RC2009v078n04ABEH004017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shandong Provincial Natural Science Foundation, China (ZR2014BQ013), National Natural Science Foundation of China (21407095, 21577080) and the Fundamental Research Funds of Shandong University (2015JC045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Tang, S., Li, S. et al. Theoretical investigation of the hydrogen bond interactions of methanol and dimethylamine with hydrazone and its derivatives. Struct Chem 27, 1241–1253 (2016). https://doi.org/10.1007/s11224-016-0749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0749-2

Keywords

Navigation