Skip to main content
Log in

First principle study of adsorption of boron-halogenated system on pristine graphyne

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

To ensure the possibility of using graphyne as a gas sensor, we have studied the adsorption of boron-halogenated system on pristine graphyne with the help of density functional theory using generalized gradient approximation. Depending on binding energy the most stable orientation, adsorption strength and optimal distance between the above mention molecules and graphyne surface have been determined. The band gap of graphyne slightly increases with the adsorption of the boron-halogenated system. The graphyne system behaves as n-type semiconductor when it interacts with BI3 and BCl3 molecules, and it behaves as p-type semiconductor when interaction with BF3 molecule takes place. Our result reveals that the electronic properties of pristine graphyne are highly influenced by the adsorption of boron-halogenated molecule. We have observed that pristine graphyne has zero electric dipole moment, but with the interaction of boron-halogenated molecule, a significant change in the electric dipole moment takes place. Hence, by measuring the electric dipole moment change, graphyne-based gas sensor can be design for the detection of above-mentioned molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  3. Bhattacharya B, Singh NB, Mondal R, Sarkar U (2015) Phys Chem Chem Phys 17:19325

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  5. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652

    Article  CAS  Google Scholar 

  6. Tontapha S, Morakot N, Ruangpornvisuti V, Wanno B (2012) Struct Chem 23:1819

    Article  CAS  Google Scholar 

  7. Romero HE, Joshi P, Gupta AK, Gutierrez HR, Cole MW, Tadigadapa SA, Eklund PC (2009) Nanotechnology 20:245501

    Article  Google Scholar 

  8. Peralta-Inga Z, Boyd S, Murray JS, O’Connor CJ, Politzer P (2003) Struct Chem 14:431

    Article  CAS  Google Scholar 

  9. Baughman RH, Eckhardt H, Kertesz M (1987) J Chem Phys 87:6687

    Article  CAS  Google Scholar 

  10. Narita N, Nagai S, Suzuki S, Nakao K (1998) J Phys Rev B58:11009

    Article  Google Scholar 

  11. Narita N, Nagai S, Suzuki S, Nakao K (2000) J Phys Rev B62:11146

    Article  Google Scholar 

  12. Bhattacharya B, Singh NB, Sarkar U (2015) Int J Quantum Chem 115:820–829

    Article  CAS  Google Scholar 

  13. Kang J, Li J, Wu F, Li SS, Xia JB (2011) J Phys Chem C115:20466–20470

    Google Scholar 

  14. Cranford SW, Buehler MJ (2011) Carbon 49:4111–4121

    Article  CAS  Google Scholar 

  15. Zhang YY, Pei QX, Wang CM (2012) Appl Phys Lett 101:081909

    Article  Google Scholar 

  16. Peyghan AA, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012) Phys E 44:1357

    Article  CAS  Google Scholar 

  17. Turabekova MA, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) J Phys Chem C 116:6012

    Article  CAS  Google Scholar 

  18. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Chem Phys Lett 541:85

    Article  CAS  Google Scholar 

  19. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) J Phys Chem C 116:22399

    Article  CAS  Google Scholar 

  20. Beheshtian J, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 258:8171

    Article  CAS  Google Scholar 

  21. Bhattacharya B, Singh NB, Sarkar U (2015) Am Inst Phy Conf Proc 1665:050066

    Google Scholar 

  22. Sarkar U, Bhattacharya B, Seriani N (2015) Chem Phys 461:74

    Article  CAS  Google Scholar 

  23. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Chem Rev 112:6156–6214

    Article  CAS  Google Scholar 

  24. Chua CK, Pumera M (2013) Chem Soc Rev 42:3222–3233

    Article  CAS  Google Scholar 

  25. Baheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2014) Struct Chem 25:1–7

    Article  Google Scholar 

  26. Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev B 77:125416

    Article  Google Scholar 

  27. Jalili S, Majidi R (2006) J Comput Theor Nanosci 3:664–669

    CAS  Google Scholar 

  28. Majidi R (2013) Mol Phys 111:89–93

    Article  CAS  Google Scholar 

  29. Peyghan AA, Noei M, Tabar MB (2013) J Mol Model 19:3007–3014

    Article  CAS  Google Scholar 

  30. Kang B, Liu H, Lee JY (2014) Phys Chem Chem Phys 16:974

    Article  CAS  Google Scholar 

  31. Won CY, Aluru NR (2008) J Phys Chem C 112:1812–1818

    Article  CAS  Google Scholar 

  32. Sarkar U, Khatua M, Chattaraj PK (2012) Phys Chem Chem Phys 14:1716–1727

    Article  CAS  Google Scholar 

  33. Sarkar U, Giri S, Chattaraj PK (2009) J Phys Chem A 113:10759–10766

    Article  CAS  Google Scholar 

  34. Chattaraj PK, Sarkar U (2003) J Phys Chem A 107:4877

    Article  CAS  Google Scholar 

  35. Khatua M, Sarkar U, Chattaraj PK (2014) Eur Phys J D 68:22

    Article  Google Scholar 

  36. Khatua M, Sarkar U, Chattaraj PK (2015) Int J Quantum Chem 115:144

    Article  CAS  Google Scholar 

  37. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  38. Rajesh C, Majumder C, Mizuseki H, Kawazoe Y (2009) J Chem Phys 130:124911

    Article  Google Scholar 

  39. Yavari F, Koratkar N (2012) J Phys Chem Lett 3:1746–1753

    Article  CAS  Google Scholar 

  40. Vedala H, Sorescu DC, Kotchey GP (2011) Nano Lett 11:2342–2347

    Article  CAS  Google Scholar 

  41. Kong J, Franklin NR, Zhou C, Chaplin MG, Peng S, Chao K, Dai H (2000) Science 287:622–625

    Article  CAS  Google Scholar 

  42. Schedin F, Geim AK, Moronov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  43. Baei MT, Moradi AV (2012) Monatsh Chem 143:1115–1121

    Article  CAS  Google Scholar 

  44. Baei MT, Peyghan AA, Moghimi M (2012) J Mol Model 18:4477–4489

    Article  CAS  Google Scholar 

  45. Baei MT, Peyghan AA, Moghimi M, Hashemian S (2013) J Mol Model 19:97–107

    Article  CAS  Google Scholar 

  46. Peyghan AA, Baei MT, Moghimi M, Hashemian S, Torabi P (2013) J Clust Sci 24:591–604

    Article  CAS  Google Scholar 

  47. Li S, Yuriko O, Tetsuya T (2010) J Phys Chem C114:3544

    Google Scholar 

  48. Ordejón P, Artacho E, Soler JM (1996) Phys Rev B 53:R10441

    Article  Google Scholar 

  49. Sanchez-Portal D, Ordejon P, Artacho E, Soler JM (1997) Int J Quantum Chem 65:53

    Article  Google Scholar 

  50. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  51. Troullier N, Martins J (1990) Solid State Commun 74:613

    Article  Google Scholar 

  52. Zou Y, Li F, Zhu ZH, Zhao MW, Xu XG, Su XY (2011) Eur Phys J B 81:475–479

    Article  CAS  Google Scholar 

  53. Majidi R, Karami AR (2015) Struct Chem 26:5–10

    Article  CAS  Google Scholar 

  54. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  55. Majidi R, Karami AR (2013) Phys E 54:177–180

    Article  CAS  Google Scholar 

  56. Majidi R, Karami AR (2014) Phys E 59:169–173

    Article  CAS  Google Scholar 

  57. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  58. Roy RK, Hirao K (2000) J Chem Phys 113:1372–1379

    Article  Google Scholar 

  59. Singh NB, Bhattacharya B, Sarkar U (2014) Struct Chem 25:1695–1710

    Article  CAS  Google Scholar 

  60. Majidi R, Karami AR (2013) Phys E 54:177–180

    Article  CAS  Google Scholar 

  61. Narita N, Nagai S, Suzuki S, Nakao K (2000) Mol Cryst Liq Cryst 340:259–264

    Article  CAS  Google Scholar 

  62. Chattaraj PK, Liu GH, Parr RG (1995) Chem Phys Lett 237:171–176

    Article  CAS  Google Scholar 

  63. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  64. Singh NB, Sarkar U (2014) J Mol Model 20:2537

    Article  Google Scholar 

  65. Bhattacharya B, Singh NB, Sarkar U (2014) J Phys: Conf Ser 566:012014

    Google Scholar 

Download references

Acknowledgments

Dr. U. Sarkar thanks International Centre for Theoretical Physics, Trieste, Italy, for hosting him as a regular associate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, J., Bhattacharya, B., Singh, N.B. et al. First principle study of adsorption of boron-halogenated system on pristine graphyne. Struct Chem 27, 1221–1227 (2016). https://doi.org/10.1007/s11224-016-0747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0747-4

Keywords

Navigation