Skip to main content
Log in

Theoretical investigation of carboranylpyrrole structures and the thermal resistance and conducting properties of carboranylpyrrole polymers

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The carboranylpyrrole polymers are functional materials with superior thermal resistance and conducting performances. The carboranylpyrrole structures and Laplacian bond order (LBO) of carborane moiety, as well as the thermal resistance and conducting properties of carboranylpyrrole dimers or polymers, were investigated theoretically. The 11B NMR chemical shifts of 3-(2-methyl-o-carboranyl)alkyl-1H-pyrrole monomers (CP-1 to CP-5) were calculated and analyzed. The average LBO values of some characteristic chemical bonds in the carborane cages of CP-1 to CP-5 molecules were calculated. It is found that the average LBO values of carborane moieties change slightly with the increase in alkyl chain length. The temperature resulting in about 15–20 % weight loss for CP-1, CP-3, CP-4 and CP-5 polymers is predicted to be more than 700 °C. Apart from the C–C bonds in carborane moieties of 3-(2-R-o-carboranyl)propyl-1H-pyrrole (R = CH2OH, CH2OCH3, CN, COCl, Ph) substituents, the LBO values of other bonds in these cages change slightly relative to that in the molecule of 3-(2-methyl-o-carboranyl)propyl-1H-pyrrole (CP-3). The C–C bond LBO values in the carborane cages of these substituents with electron-donating groups (R = CH2OH, CH2OCH3) are bigger than that in CP-3, while those values in those substituents with electron-withdrawing groups (R = CN, COCl, Ph) are smaller than that in CP-3. The polymerization activity calculated for CP-1 to CP-5 monomers increases with the increase in alkyl chain length. The calculated orbital energy gap (∆E LUMO−HOMO) of CP-1 to CP-5 dimers decreases with the increase in alkyl chain length, and accordingly, the electronic conductivity has the potential to increase. In addition, the calculated band gaps of CP-1 to CP-5 dimers cell models also decrease with the increase in alkyl chain length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Furstner A (2003) Angew Chem Int Ed 42:3582–3603

    Article  Google Scholar 

  2. Satapathy R, Dash BP, Zheng C, Maguire JA, Hosmane NS (2011) J Org Chem 76:3562–3565

    Article  CAS  Google Scholar 

  3. Lee D, Swager TM (2003) J Am Chem Soc 125:6870–6871

    Article  CAS  Google Scholar 

  4. Kamran M, Ullah H, Shah AA, Bilal S, Tahir AA, Ayub K (2015) Polymer 72:30–39

    Article  CAS  Google Scholar 

  5. Fabre B, Chayer S, Vicente MGH (2003) Electrochem Commun 5:431–434

    Article  CAS  Google Scholar 

  6. Fabre B, Clark JC, Vicente MGH (2006) Macromolecules 39:112–119

    Article  CAS  Google Scholar 

  7. Chayer S, Jaquinod L, Smith KM, Vicente MGH (2001) Tetrahedron Lett 42:7759–7761

    Article  CAS  Google Scholar 

  8. Clark JC, Fronczek FR, Vicente MGH (2005) Tetrahedron Lett 46:2365–2368

    Article  CAS  Google Scholar 

  9. Oliva JM, Klein DJ, Schleyer PvR, Serrano-Andrés L (2009) Pure Appl Chem 81:719–729

    Article  CAS  Google Scholar 

  10. Glukhov IV, Antipin MY, Lyssenko KA (2004) Eur J Inorg Chem 2004:1379–1384

    Article  Google Scholar 

  11. Glukhov IV, Lyssenko KA, Antipin MY (2007) Struct Chem 18:465–469

    Article  CAS  Google Scholar 

  12. Smith SG, Paton RS, Burton JW, Goodman JM (2008) J Org Chem 73:4053–4062

    Article  CAS  Google Scholar 

  13. Pallier C, Leyssale JM, Truflandier LA (2013) Chem Mater 25:2618–2629

    Article  CAS  Google Scholar 

  14. Lu T, Chen FW (2013) J Phys Chem A 117:3100–3108

    Article  CAS  Google Scholar 

  15. Lu T, Chen FW (2012) J Comp Chem 33:580–592

    Article  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman, JR, Scalmani G, Barone V, Mennucci B, Petersson G. A, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Wallingford

Download references

Acknowledgments

This project was financially supported by NSAF (U1430127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangwei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Li, T. & Shi, L. Theoretical investigation of carboranylpyrrole structures and the thermal resistance and conducting properties of carboranylpyrrole polymers. Struct Chem 27, 1061–1069 (2016). https://doi.org/10.1007/s11224-015-0725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0725-2

Keywords

Navigation