Skip to main content
Log in

Gas phase double-resonance IR/UV spectroscopy of an alanine dipeptide analogue using a non-covalently bound UV-tag: observation of a folded peptide conformation in the Ac-Ala-NH2–toluene complex

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The conformation-selective IR spectroscopy of the alanine dipeptide analogue Ac-Ala-NH2, a molecule deprived of a UV chromophore, has been obtained by laser double-resonance IR/UV spectroscopy, using a UV-tag (toluene) non-covalently bound to the peptide. The Ac-Ala-NH2–toluene complex, as detected through a resonant multiphoton ionisation process, is composed of a folded peptide monomer (C7 conformation) attached to the toluene molecule through an NH–π H-bond. Quantum chemistry calculations suggest that the structure of this complexed folded peptide is very similar to that of the isolated peptide, legitimating this experimental strategy for investigating the peptide structure. The population of exclusively folded peptides, in contrast to the C5/C7 conformational mixture observed on isolated monomers measured with other techniques, suggest that conformational changes might not only be induced by complexation of a single polar solvent molecule as previously reported, but also by an apolar, weakly interacting molecule like toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perczel A, Ángyán JG, Kajtár M, Viviani W, Rivail JL, Marcoccia JF, Csizmadia IG (1991) J Am Chem Soc 113:6256

    Article  CAS  Google Scholar 

  2. Farkas O, McAllister MA, Ma JH, Perczel A, Hollosi M, Csizmadia IG (1996) Theochem-J Mol Struct 369:105–114

    Article  CAS  Google Scholar 

  3. Endredi G, Perczel A, Farkas O, McAllister MA, Csonka GI, Ladik J, Csizmadia IG (1997) Theochem-J Mol Struct 391:15–26

    Article  CAS  Google Scholar 

  4. Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim T, Suhai S (2001) Chem Phys 263:203–219

    Article  CAS  Google Scholar 

  5. Improta R, Barone V, Kudin KN, Scuseria GE (2001) J Am Chem Soc 123:3311–3322

    Article  CAS  Google Scholar 

  6. Perczel A, Farkas O, Jakli I, Topol IA, Csizmadia IG (2003) J Comput Chem 24:1026–1042

    Article  CAS  Google Scholar 

  7. Perczel A, Jakli I, Csizmadia IG (2003) Chem Eur J 9:5332–5342

    Article  CAS  Google Scholar 

  8. Sahai MA, Sahai MR, Chass GA, Penke B, Csizmadia IG (2003) Theochem-J Mol Struct 666:327–336

    Article  Google Scholar 

  9. Chass GA, Mirasol RS, Setiadi DH, Tang TH, Chin W, Mons M, Dimicoli I, Dognon JP, Viskolcz B, Lovas S, Penke B, Csizmadia IG (2005) J Phys Chem A 109:5289–5302

    Article  CAS  Google Scholar 

  10. Vass E, Hollosi M, Besson F, Buchet R (2003) Chem Rev 103:1917

    Article  CAS  Google Scholar 

  11. Meijer G, de Vries M, Hunziker HE, Wendt HR (1990) Appl Phys B 51:395–403

    Article  Google Scholar 

  12. Piuzzi F, Dimicoli I, Mons M, Tardivel B, Zhao Q (2000) Chem Phys Lett 320:282–288

    Article  CAS  Google Scholar 

  13. Pribble RN, Zwier TS (1994) Science 265:75

    Article  CAS  Google Scholar 

  14. Cabezas C, Varela M, Cortijo V, Jimenez AI, Pena I, Daly AM, Lopez JC, Cativiela C, Alonso JL (2013) Phys Chem Chem Phys 15:2580–2585

    Article  CAS  Google Scholar 

  15. Leavitt CM, Moore KB III, Raston PL, Agarwal J, Moody GH, Shirley CC, Schaefer HF III, Douberly GE (2014) J Phys Chem A 118:9692–9700

    Article  CAS  Google Scholar 

  16. Chin W, Piuzzi F, Dimicoli I, Mons M (2006) Phys Chem Chem Phys 8:1033–1048

    Article  CAS  Google Scholar 

  17. Gloaguen E, Mons M (2015) Top Curr Chem 364:225–270

    Article  Google Scholar 

  18. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  19. Gloaguen E, de Courcy B, Piquemal JP, Pilmé J, Parisel O, Pollet R, Biswal HS, Piuzzi F, Tardivel B, Broquier M, Mons M (2010) J Am Chem Soc 132:11860–11863

    Article  CAS  Google Scholar 

  20. Compagnon I, Oomens J, Bakker J, Meijer G, von Helden G (2005) Phys Chem Chem Phys 7:13–15

    Article  CAS  Google Scholar 

  21. Simons JP (2009) Mol Phys 107:2435–2458

    Article  CAS  Google Scholar 

  22. Leon I, Montero R, Castano F, Longarte A, Fernandez JA (2012) J Phys Chem A 116:6798–6803

    Article  CAS  Google Scholar 

  23. Screen J, Stanca-Kaposta EC, Gamblin DP, Liu B, MacLeod NA, Snoek LC, Davis BG, Simons JP (2007) Angew Chem Int Ed 46:3644–3648

    Article  CAS  Google Scholar 

  24. Gloaguen E, Valdes H, Pagliarulo F, Pollet R, Tardivel B, Hobza P, Piuzzi F, Mons M (2010) J Phys Chem A 114:2973–2982

    Article  CAS  Google Scholar 

  25. TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007. http://www.turbomole.com, 2011

  26. Plowright RJ, Gloaguen E, Mons M (2011) ChemPhysChem 12:1889–1899

    Article  CAS  Google Scholar 

  27. Courty A, Mons M, LeCalve J, Piuzzi F, Dimicoli I (1997) J Phys Chem A 101:1445–1450

    Article  CAS  Google Scholar 

  28. Mons M, Dimicoli I, Piuzzi F (2002) Int Rev Phys Chem 21:101–135

    Article  CAS  Google Scholar 

  29. Mons M, Dimicoli I, Tardivel B, Piuzzi F, Robertson EG, Simons JP (2001) J Phys Chem A 105:969–973

    Article  CAS  Google Scholar 

  30. Chin W, Piuzzi F, Dognon J-P, Dimicoli I, Mons M (2005) J Chem Phys 123:084301

    Article  Google Scholar 

  31. Borho N, Suhm MA, Le Barbu-Debus K, Zehnacker A (2006) Phys Chem Chem Phys 8:4449–4460

    Article  CAS  Google Scholar 

  32. Sohn WY, Kim M, Kim S-S, Park YD, Kang H (2011) Phys Chem Chem Phys 13:7006–7011

    Article  Google Scholar 

  33. Sohn WY, Cho K-J, Lee SY, Kang SS, Park YD, Kang H (2012) Chem Phys Lett 525–26:37–43

    Article  Google Scholar 

  34. Biswal HS, Loquais Y, Tardivel B, Gloaguen E, Mons M (2011) J Am Chem Soc 133:3931–3942

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We also thank the Agence Nationale de la Recherche (Grants ANR-08-BLAN-0158-01 and ANR-14-CE06-0019-01), the “Triangle de la Physique” Foundation (Grant 2008-053T-SERPEBIO) and the “Investissements d’Avenir” LABEX PALM Funding program (ANR-10-LABX-0039-PALM; Grant DIRCOS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Mons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gloaguen, E., Tardivel, B. & Mons, M. Gas phase double-resonance IR/UV spectroscopy of an alanine dipeptide analogue using a non-covalently bound UV-tag: observation of a folded peptide conformation in the Ac-Ala-NH2–toluene complex. Struct Chem 27, 225–230 (2016). https://doi.org/10.1007/s11224-015-0690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0690-9

Keywords

Navigation