Skip to main content
Log in

DFT study on the mechanism of Pd(OAc)2-catalyzed hydrothiolation of alkenes bearing heteroatoms with benzenethiol

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The work reports the theoretical investigation of the mechanism and regioselectivity of the Pd(OAc)2-catalyzed hydrothiolation of heteroatom-substituted alkenes with benzenethiol leading to Markovnikov-type product. The reaction process includes: (1) activation of the S–H bond for benzenethiol by the catalyst Pd(OAc)2; (2) migratory insertion of the alkenes bearing heteroatoms into the Pd–S bond; (3) AcOH molecule attacks Pd–C bonds to give the product and release the catalyst. In addition, the computed results shown that Pd(OAc)2-catalyzed hydrothiolation take place by two possible channels and get anti-Markovnikov-type or Markovnikov-type species. The Markovnikov-type reaction channel is more favored with the energy barriers of 21.9–25.6 versus 28.5–31.2 kcal/mol for the anti-Markovnikov-type pathway. The theoretical results and the experimental observations of Tamai and co-workers are consistent. This reaction would proceed in mild conditions and afford the Markovnikov-type products in high yields and regioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roncali J (1992) Chem Rev 92:711

    Article  CAS  Google Scholar 

  2. SanMiguel L, Matzger AJ (2007) Macromolecules 40:9233

    Article  CAS  Google Scholar 

  3. Cortez MA, Grayson SM (2010) Macromolecules 43:4081

    Article  CAS  Google Scholar 

  4. Konkolewicz D, Gray-Weale A, Perrier SB (2009) J Am Chem Soc 131:18075

    Article  CAS  Google Scholar 

  5. Kloxin CJ, Scott TF, Bowman CN (2009) Macromolecules 42:2551

    Article  CAS  Google Scholar 

  6. Ahmed E, Kim FS, Xin H, Jenekhe SA (2009) Macromolecules 42:8615

    Article  CAS  Google Scholar 

  7. Fairbanks BD, Scott TF, Kloxin CJ, Anseth KS, Bowman CN (2008) Macromolecules 42:211

    Article  Google Scholar 

  8. Ma Z, Rao L, Bierbach U (2009) J Med Chem 52:3424

    Article  CAS  Google Scholar 

  9. Szilragyi A, Fenyvesi F, Majercsik O, Pelyvas IF, Bacskay I, Feher P, Varadi J, Vecsernyes M, Herczegh P (2006) J Med Chem 49:5626

    Article  Google Scholar 

  10. Johannesson P, Lindeberg G, Johansson A, Nikiforovich GV, Gogoll A, Synnergren B, Le Greves M, Nyberg F, Karlen A, Hallberg A (2002) J Med Chem 45:1767

    Article  CAS  Google Scholar 

  11. Meng D, Chen W, Zhao W (2007) J Nat Prod 70:824

    Article  CAS  Google Scholar 

  12. Zhang Y, Liu S, Che Y, Liu X (2007) J Nat Prod 70:1522

    Article  CAS  Google Scholar 

  13. Dvorak CA, Schmitz WD, Poon DJ, Pryde DC, Lawson JP, Amos RA, Meyers AI (2000) Angew Chem Int Ed 39:1664

    Article  CAS  Google Scholar 

  14. Han LB, Tanaka M (1999) Chem Commun 1999:395

    Article  Google Scholar 

  15. Beletskaya IP, Ananikov VP (2011) Chem Rev 111:1596

    Article  CAS  Google Scholar 

  16. Ogawa A (2013) Top Organomet Chem 43:325

    CAS  Google Scholar 

  17. Kondo T, Mitsudo TA (2000) Chem Rev 100:3205

    Article  CAS  Google Scholar 

  18. Bichler P, Love JA (2010) Top Organomet Chem 31:39

    CAS  Google Scholar 

  19. Zhang XH, Wang KT (2015) RSC Adv 5:34439

    Article  CAS  Google Scholar 

  20. Zhang XH, Geng ZY, Wang KT, Li SS (2014) J Mol Model 20:2409

    Article  Google Scholar 

  21. Ananikov VP, Orlov NV, Beletskaya IP, Khrustalev VN, Antipin MY, Timofeeva TV (2007) J Am Chem Soc 129:7252

    Article  CAS  Google Scholar 

  22. Ogawa A (2000) J Organomet Chem 611:463

    Article  CAS  Google Scholar 

  23. Tamai T, Ogawa A (2014) J Org Chem 79:5028

    Article  CAS  Google Scholar 

  24. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01; Gaussian, Inc., Wallingford CT

  26. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  27. Ye F, Qu SL, Zhou L, Peng C, Wang CP, Cheng JJ, Hossain ML, Liu YZ, Zhang Y, Wang ZX, Wang JB (2015) J Am Chem Soc 137:4435

    Article  CAS  Google Scholar 

  28. Skillinghaug B, Sköld C, Rydfjord J, Svensson F, Behrends M, Sävmarker J, Sjöberg PJR, Larhed M (2014) J Org Chem 79:12018

    Article  CAS  Google Scholar 

  29. Jindal G, Sunoj RB (2014) J Am Chem Soc 136:15998

    Article  CAS  Google Scholar 

  30. Wakioka M, Nakamura Y, Hihara Y, Ozawa F, Sakaki S (2014) Organometallics 33:6247

    Article  CAS  Google Scholar 

  31. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976

    Article  CAS  Google Scholar 

  32. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  33. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  34. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029

    Article  CAS  Google Scholar 

  35. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  36. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Longyuan young creative talents to support projects, Gansu Province (2014–98). We are grateful to the Gansu Province Supercomputer Center for essential support. We are grateful to the reviewers for their invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-hui Zhang.

Ethics declarations

Conflict of interest

The author(s) confirm that this article content has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Ch., Zhang, Xh. DFT study on the mechanism of Pd(OAc)2-catalyzed hydrothiolation of alkenes bearing heteroatoms with benzenethiol. Struct Chem 27, 919–926 (2016). https://doi.org/10.1007/s11224-015-0673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0673-x

Keywords

Navigation