Skip to main content
Log in

Symmetry-controlled rearrangements in Piedfort Units (PU) of 2,4,6-triaryloxy-1,3,5-triazines

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

2,4,6-triaryloxy-1,3,5-triazines (POT) form in general molecular diads, termed as Piedfort Units (PU), in their crystals and their clathrates. Their bulky phenyl substituents (R = Me, F, Cl, Br, I, CN) in ortho, meta or para position substantially hinder internal rotations. Instead, non-crystallographic rotations (ncr) or translations (nct) are the bridges between the semirigid homologues or analogues, occasionally polymorphs. They occur in the space groups R3c (161), \(R\bar 3\) (148), \(P\bar 3c1\) (165), P63/m (176), \(P\bar 31c\) (163), P21/c (14), Ia (9), and \(P\bar 1\) (2). In each group, the molecules are close to be isometrical, while these groups are linked by non-crystallographic symmetries termed morphotropism. The observed non-crystallographic symmetries are virtual between the homologues and real between their dimorphs. Real ncr’s were also found between 4-RPOTs and their clathrate forms. It is demonstrated how e.g. toluene induces real nrc’s in its clathrate with 4-IPOT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. “Because evidently impossible to define isomorphism precisely, we shall apply the term isostuctural to crystals in which there is essentially the same arrangement of geometrically similar structural units. Although it is not more precise than isomorphous this term refers to the general nature of the structure rather than the shape of the crystals.”

References

  1. Kálmán A, Párkányi L, Argay G (1993) Acta Crystallogr B 49:1039–1049

    Article  Google Scholar 

  2. Wells AF (1960) Inorganic structural chemistry, 3rd edn. Clarendon, Oxford 186

    Google Scholar 

  3. Ojala WH, Smieja JM, Spude JM, Arola TM, Kupsa MK, Herrera N, Ojala CR (2007) Acta Crystallogr B 63:485–496

    Article  CAS  Google Scholar 

  4. Saha BK, Nangia A (2007) Cryst Growth Des 7:396–401

    Article  Google Scholar 

  5. Fábián L, Kálmán A (1999) Acta Crystallogr B 55:1099–1108

    Article  Google Scholar 

  6. Rutherford JS (1997) Acta Chim Hung 134:395–405

    CAS  Google Scholar 

  7. Dziubek KF, Katrusiak A (2003) Z Kristallogr 218:1–8

    Google Scholar 

  8. Gelbrich T, Hursthouse MB (2005) CrystEngComm 7:324–336 (and references therein)

    Article  CAS  Google Scholar 

  9. Hundt R, Schön JC, Jansen MJ (2006) J Appl Crystallogr 39:6–16

    Article  CAS  Google Scholar 

  10. Kálmán A, Párkányi L (1997) In: Hargittai M, Hargittai I (eds) Advances in molecular structure research, vol 3. JAI Press, Greenwich, pp 189–226

  11. Kálmán A (2005) Acta Crystallogr B 61:536–547

    Article  Google Scholar 

  12. Kálmán A, Fábián L (2007) Acta Crystallogr B 63:411–417

    Article  Google Scholar 

  13. Groth P (1870) Berichte Chem Ges 3:449–457

    Article  Google Scholar 

  14. Groth P (1906) An introduction to chemical crystallography (trans. H. Marschall) Gurney & Jackson, London, pp 36–65

  15. Kitaigorodskii AI (1961) Organic chemical crystallography. Consultants Bureau, New York

    Google Scholar 

  16. Fábián L, Kálmán A, Argay G, Bernáth G, Gyarmati ZC (2005) Cryst Growth Des 5:773–782

    Article  Google Scholar 

  17. Fábián L, Kálmán A, Argay G, Bernáth G, Gyarmati ZC (2004) Chem Commun pp 2114–2115

  18. Fábián L, Bombicz P, Czugler M, Kálmán A, Weber E, Hecker M (1999) Supramol Chem 11:151–167

    Article  Google Scholar 

  19. Zimmermann H, Bürzlaff H (1985) Z Kristall 170:241–246

    Article  CAS  Google Scholar 

  20. Anthony AR, Desiraju GR, Jetti RKR, Kuduva SS, Madhavi NNL, Nangia A, Thaimattam R, Thalladi VR (1998) Cryst Eng 1:1–18

    Article  CAS  Google Scholar 

  21. Thalladi VR, Brasselet S, Weiss HC, Bläser D, Katz AK, Carrell HL, Boese R, Zyss J, Nangia A, Desiraju GR (1998) J Am Chem Soc 120:2563–2577

    Article  CAS  Google Scholar 

  22. Boese R, Desiraju GR, Jetti RKR, Kirchner MT, Ledoux I, Thalladi VR, Zyss J (2002) Struct Chem 13:321–328

    Article  CAS  Google Scholar 

  23. Reichenbächer K, Süss HI, Stoeckli-Evans H, Bracco S, Sozzani P, Weber E, Hulliger J (2004) New J Chem 28:393–397

    Article  Google Scholar 

  24. Saha BK, Aitipamula S, Banerjee R, Nangia A, Jetti RKR, Boese R, Lam CK, Mak TC (2005) Mol Cryst Liq Cryst 440:295–316

    Article  CAS  Google Scholar 

  25. Saha BK, Nangia A (2007) Heteroat Chem 18:185–194

    Article  CAS  Google Scholar 

  26. Bombicz P, Kálmán A (2008) Cryst Growth Des 8:2821–2823

    Article  CAS  Google Scholar 

  27. Allen FH (2002) Acta Crystallogr B 58:380–388

    Article  Google Scholar 

  28. Jessiman AS, MacNicol DD, Malison PR, Wallace IJ (1990) Chem Soc Chem Commun, pp 1619–1621

  29. Fábián L, Kálmán A (2004) Acta Crystallogr B 60:547–558

    Article  Google Scholar 

  30. Báthori NB (2006) PhD thesis, Budapest (paper on synthesis is in preparation)

Download references

Acknowledgments

The authors thank Professors László Bihátsi and Mátyás Czugler for their valuable advices to the PhD work of N. B. Báthori (Budapest). P. B. and A. K. acknowledge the support from the Hungarian Scientific Research Foundation (OTKA K-100801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Bombicz.

Additional information

Dedicated to Professor Magdolna Hargittai on the occasion of her 70th birthday.

Appendix

Appendix

Graphic abbreviations:

  • POT⊥C 3 Perpendicular to the C 3 axis of the POT molecule

  • POT∥C 3 Parallel to the C 3 axis of the POT molecule

Crystal data and details of structure determination and refinement of 4-IPOT, 4-IPOT_TOL, 4-iPrPOT and 2-MePOT:

4-IPOT [30]

Crystal data: (2,4,6-tris(4-iodophenoxy)-1,3,5-triazine (C21H12I3N3O3, Ms = 735.04, trigonal R3c (No. 161) a = b = 24.831(5), c = 6.627(1) Å, α = β = 90°, γ = 120°, V = 3538.7(1) Å3, Z = 6, Dc (g cm−3) = 2.069, μ (mm−1) = 4.00 (size 0.14 × 0.02 × 0.02 mm), colourless needles from acetonitrile.

X-ray data: R-Axis Rapid, 93(2)K, λ(MoKα) = 0.71070 Å, θ = 3.28–23.24°, N tot = 30080 Nobs = 1064/91, [I > 2σI] = 968, R m = 0.104 (abs. num.c.) Max/min trans 0.9243/0.6043. R 1, wR 2 [I > 2σI] = 0.0391, 0.0604, R 1, wR 2 (total) = 0.0445, 0.0620, [e Å−3] −0.27/0.294

4-IPOT_TOL [30]

Crystal data: (2,4,6-tris(4-iodolphenoxy)-1,3,5-triazine·toluene clathrate (C21H12N3O3I3·C7H8), Ms = 827.19, trigonal \(R\bar 3\) (No. 148) a = b = 15.592(1), c = 18.359(2) Å, α = β = 90°, γ = 120°, V = 3865.3 (7) Å3, Z = 6, Dc (g cm−3) = 2.189, μ (mm−1) = 28.824 (size 0.50 × 0.30 × 0.30 mm) colourless prisms from toluene.

X-ray data: R-Axis Rapid, 98(2)K, λ(CuKα) = 1.5418 Å, θ = 0.9–73.2.0°, N tot = 17538, Nobs = 1655/198, [I > 2σI] = 1285, R m = 0.338 (abs. cylinder), Max/min trans 0.0006/0.0271. R 1, wR 2 [I > 2σI] = 0.1264/0.3056, R 1, wR 2 (total) = 0.1373/0.3246, [e Å−3] −3.347/3.349.

4-iPrPOT [30]

Crystal data: (2,4,6-tris(4-isopropylphenoxy)-1,3,5-triazine (C30H33N3O3, Ms = 483.59, trigonal R3c (No. 161) a = b = 24.259(1), c = 7.805(1) Å, α = β = 90°, γ = 120°, V = 3977.9 (6) Å3, Z = 6, Dc (g cm−3) = 1.211, μ (mm−1) = 0.101 (size 0.40 × 0.30 × 0.06 mm) colourless prisms from dichloromethane.

X-ray data: R-Axis Rapid, 99(2)K, λ(MoKα) = 0.71070 Å, θ = 3.34–27.32° N tot = 19346 Nobs = 2030/123, [I > 2σI] = 1413, R m = 0.163 (abs. num.c.) Max/min trans 0.9961/0.9961. R 1, wR 2 [I > 2σI] = 0.0708, 0.1149, R 1, wR 2 (total) = 0.1090, 0.1320, [e Å−3] −0.214/0.231

2-MePOT [30]

Crystal data: (2,4,6-tris(2-methylphenoxy)-1,3,5-triazine (C24H21N3O, Ms = 399.44, trigonal R3c (No. 161) a = b = 20.593(1), c = 8.605(1) Å α = β = 90°, γ = 120°, V = 3160.6 (5) Å3, Z = 6, Dc (g cm−3) = 1.259, μ (mm−1) = 0.684 (size 0.11 × 0.15 × 0.29 mm) colourless prisms from toluene.

X-ray data: R-Axis Rapid, 173(2)K, λ(CuKα) = 1.5418 Å, θ = 7.45–71.78° N tot = 14029, Nobs = 1355/92, [I > 2σI] = 890, R m = 0.140 (abs. num.c.) Max/min trans 0.9286/0.8263, R 1, wR 2 [I > 2σI] = 0.0447/0.1017, R 1, wR 2 (total) = 0.0592/0.1063, [e Å−3] −0.09/0.08

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bombicz, P., Báthori, N.B. & Kálmán, A. Symmetry-controlled rearrangements in Piedfort Units (PU) of 2,4,6-triaryloxy-1,3,5-triazines. Struct Chem 26, 1611–1619 (2015). https://doi.org/10.1007/s11224-015-0659-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0659-8

Keywords

Navigation