Skip to main content
Log in

Structure, spectroscopy, and thermal decomposition of 5-chloro-1,2,3,4-thiatriazole: a He I photoelectron, infrared, and quantum chemical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

5-Chloro-1,2,3,4-thiatriazole has been investigated in the gas phase for the first time by mid-infrared and He I photoelectron spectroscopy. The ground-state geometry has been obtained from quantum chemical calculations at the CCSD(T) and B3LYP levels using aug-cc-pVTZ basis set. Ionization potentials have been determined and the electronic structure has been discussed within the frame of molecular orbital theory. IR and photoelectron spectroscopies, supported by quantum chemical calculations at the B3LYP and SAC-CI levels, provide a detailed investigation into the vibrational and electronic character of the molecule. Thermal stability of 5-chloro-1,2,3,4-thiatriazole has been studied both experimentally and theoretically. Flash vacuum thermolysis of the molecule produces fast quantitatively N2, ClCN, and sulfur. Theoretical calculations at the CCSD(T)//B3LYP level predict competitive decomposition routes, starting either with a retro-cycloaddition reaction leading to N2S and ClCN or with a ring opening to chlorothiocarbonyl azide intermediate, to produce finally N2, S, and ClCN. Calculations also predict that N2S is reactive and decomposes in bimolecular reactions to N2 and S2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Freund M, Schander A (1896) Ueber das Amidotriazsulfol. Ber 29:2500–2505

    Article  CAS  Google Scholar 

  2. Lieber E, Oftedahl E, Pillai CN, Hites RD (1957) Infrared Spectrum of the So-called 5-Amino-1,2,3,4-thiatriazole. J Org Chem 22:441–442

    Article  CAS  Google Scholar 

  3. Bergtrup M (2003) 1,2,3,4-Thiatriazoles. Sci Synth 13:833–847

    Google Scholar 

  4. Jensen KA, Pedersen C (1964) 1,2,3,4-Thiatriazoles. Adv Heterocycl Chem 3:263–284

    Article  CAS  Google Scholar 

  5. Holm A (1976) 1,2,3,4-Thiatriazoles. Adv Heterocycl Chem 20:145–174

    Article  CAS  Google Scholar 

  6. Holm A, Larsen BD (1996) 1,2,3,4-Thiatriazoles. Comp Heterocycl Chem II 4:691–731

    CAS  Google Scholar 

  7. Dehaen W, Bakulev VA (2008) 1,2,3,4-Thiatriazoles. Comp Heterocycl Chem III 6:441–483

    Google Scholar 

  8. Lieber E, Lawyer CB, Trivedi JP (1961) Reaction of thiophosgene with azide ion. J Org Chem 26:1644–1646

    Article  CAS  Google Scholar 

  9. Csákvári B, Nagy A, Zanathy L, Szepes L (1992) VUV photoelectron spectrometer (ATOMKI ESA 32) for multipurpose chemical applications. Magy Kém Foly 98:415–419

    Google Scholar 

  10. Frisch MJ et al (2010) GAUSSIAN 09 (Revision B.01), Gaussian, Inc., Wallingford CT

  11. http://www.gaussian.com/g_tech/g_ur/l_keywords09.htm

  12. Pongor G (1993) Program scale 3, department of theoretical chemistry. Eötvös Loránd University, Budapest

    Google Scholar 

  13. Keresztury G, Jalsovszky G (1971) Alternative calculation of the vibrational potential energy distribution. J Mol Struct 10:304–305

    Article  CAS  Google Scholar 

  14. Gordy W (1947) Dependence of bond order and of bond energy upon bond lengths. J Chem Phys 15:305–310

    Article  CAS  Google Scholar 

  15. Bender H, Carnovale F, Peel JB, Wentrup C (1988) Dinitrogen sulfide, N2S, revealed by photoelectron spectroscopy. J Am Chem Soc 110:3458–3461

    Article  CAS  Google Scholar 

  16. Wentrup C, Kambouris P (1991) N-Sulfides. dinitrogen sulfide, thiofulminic acid, and nitrile sulfides. Chem Rev 91:363–373

    Article  CAS  Google Scholar 

  17. Krebsz M, Pasinszki T (2011) Generation, identification, and synthetic applications of nitrile sulfides and nitrile selenides. Curr Org Chem 15:1734–1744

    Article  CAS  Google Scholar 

  18. Pasinszki T, Kárpáti T, Westwood NPC (2001) Structure and stability of small nitrile sulfides and their attempted generation from 1,2,5-thiadiazoles. J Phys Chem A 105:6258–6265

    Article  CAS  Google Scholar 

  19. Seth-Paul WA (1969) Classical and modern procedures for calculating pr separations of symmetrical and asymmetrical top molecules. J Mol Struct 3:403–417

    Article  CAS  Google Scholar 

  20. Pacsai B, Vass G, Pasinszki T (2012) Structure and spectroscopy of 3-chloro-4-fluoro-1,2,5-thiadiazole. Eur Chem Bull 1:98–102

    CAS  Google Scholar 

  21. Pasinszki T, Krebsz M, Vass G (2010) Ground and ionic states of 1,2,5-thiadiazoles: an UV-photoelectron spectroscopic and theoretical study. J Mol Struct 966:85–91

    Article  CAS  Google Scholar 

  22. Frost DC, MacDonald CB, McDowell CA, Westwood NPC (1981) Preparation and He I photoelectron spectra of the halogen thiocyanates, XSCN (X = Cl and Br). J Am Chem Soc 103:4423–4427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Hungarian Scientific Research Fund for financial support to the project (grant no. OTKA K101164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Pasinszki.

Additional information

The paper is dedicated to Magdolna Hargittai on the occasion of her 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasinszki, T., Dzsotján, D., Vass, G. et al. Structure, spectroscopy, and thermal decomposition of 5-chloro-1,2,3,4-thiatriazole: a He I photoelectron, infrared, and quantum chemical study. Struct Chem 26, 1603–1610 (2015). https://doi.org/10.1007/s11224-015-0655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0655-z

Keywords

Navigation