Skip to main content
Log in

Enthalpy of formation of guanidine and its amino and nitro derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The gas-phase enthalpies of formation (\({\Delta_{\text{f}}}H_{ 2 9 8}^\circ\)) of guanidine and its 10 amino and nitro derivatives were calculated using the isodesmic reaction method at the Gaussian-4 level of theory. The enthalpies of sublimation (\({\Delta_{\text{sub}}}H_{ 2 9 8}^\circ\)) were estimated in the framework of the Politzer approach that combines the empirical equation for enthalpy of sublimation with the B3LYP/cc-pVTZ calculations of the electronic properties of the molecular surfaces. The enthalpies of sublimation of mono-, di-, and triaminoguanidine were also estimated using experimental data for their salts. On the basis of the calculated \({\Delta_{\text{f}}}H_{ 2 9 8}^\circ\)(g) and \({\Delta_{\text{sub}}}H_{ 2 9 8}^\circ\) values, the solid-phase enthalpies of formation were estimated for all guanidine derivatives. A predictive model confirms the available experimental data for guanidine, nitroguanidine, and some of their derivatives. The calculated value of solid-phase enthalpy of formation of high-nitrogen energetic compound 3,6-bis(2-nitroguanidino)-1,2,4,5-tetrazine is also in reasonable agreement with the reported experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishikawa T (2009) Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts. Wiley, Chippenham

    Book  Google Scholar 

  2. Berlinck RGS, Trindade-Silva AE, Santos MFC (2012) The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 29:1382–1406

    Article  CAS  Google Scholar 

  3. Tan CH, Coles M (2014) The chemistry of guanidine, guanidinium, and guanidinate compounds. Aust J Chem 67:963–964

    Article  CAS  Google Scholar 

  4. Meyer R, Köhler J, Homburg A (2007) Explosives. Wiley, Weinheim

    Book  Google Scholar 

  5. Chavez DE, Tappan BC, Hiskey MA, Son SF, Harry H, Montoya D, Hagelberg S (2005) New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies. Prop Explos Pyrotech 30:412–417

    Article  CAS  Google Scholar 

  6. Chavez DE, Hiskey MA, Huynh MH, Naud DL, Son SF, Tappan BC (2006) The combustion properties of novel high-nitrogen energetic materials. J Pyrotech 23:70–80

    CAS  Google Scholar 

  7. Gao Y, Arritt SW, Twamley B, Shreeve JM (2005) Guanidinium-based ionic liquids. Inorg Chem 44:1704–1712

    Article  CAS  Google Scholar 

  8. Göbel M, Klapötke TM (2007) Potassium-, ammonium-, hydrazinium-, guanidinium-, aminoguanidinium-, diaminoguanidinium-, triaminoguanidinium- and melaminiumnitroformate – synthesis, characterization and energetic properties. Z Anorg Allg Chem 633:1006–1017

    Article  Google Scholar 

  9. Klapötke TM, Mayer P, Sabate CM, Welch JM, Wiegand N (2008) Simple, nitrogen-rich, energetic salts of 5-nitrotetrazole. Inorg Chem 47:6014–6027

    Article  Google Scholar 

  10. Zhang Q, He C, Yin P, Shreeve JM (2014) Insensitive nitrogen-rich materials incorporating the nitroguanidyl functionality. Chem Asian J 9:212–217

    Article  CAS  Google Scholar 

  11. Wu B, Wang Z, Yang H, Lin Q, Ju X, Lu C, Cheng G (2015) Synthesis and characterization of a new family of energetic salts based on guanidinium cation containing picryl moiety. New J Chem 39:893–901

    Article  CAS  Google Scholar 

  12. Peeters D, Leroy G, Wilante C (1997) The proton affinities and proton transfer in imine, amidine and guanidine series. J Mol Struct 416:21–32

    Article  CAS  Google Scholar 

  13. Osmont A, Catoire L, Gökalp I, Yang V (2007) Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust Flame 151:262–273

    Article  CAS  Google Scholar 

  14. Fischer N, Klapötke TM, Stierstorfer J (2012) 1-Amino-3-nitroguanidine (ANQ) in high-performance ionic energetic materials. Z Naturforsch 67b:573–588

    Google Scholar 

  15. Roux MV, Smith PJ, Liebman JF (2005) Paradigms and paradoxes: thoughts on the enthalpy of formation of guanidine and its monosubstituted derivatives. Struct Chem 16:73–75

    Article  CAS  Google Scholar 

  16. Bulusu S, Dudley RL, Autera JR (1987) Structure of nitroguanidine: nitroamine or nitroimine? New NMR evidence from 15N-labeled sample and 15N spin coupling constants. Magn Reson Chem 25:234–238

    Article  CAS  Google Scholar 

  17. Vasiliev AD, Astachov AM, Molokeev MS, Kruglyakova LA, Stepanov RS (2003) 1,2-Dinitroguanidine. Acta Cryst C59:o550–o552

    CAS  Google Scholar 

  18. Smith G, Wermuth UD, White JM (2007) (2,4,6-Trinitrophenyl)guanidine. Acta Cryst E 63:o3759

    Article  CAS  Google Scholar 

  19. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126(8):084108

    Article  Google Scholar 

  20. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  21. Raghavachari K, Stefanov BB (1997) Accurate density functional thermochemistry for larger molecules. Mol Phys 91:555–559

    Article  CAS  Google Scholar 

  22. Dorofeeva OV, Kolesnikova IN, Marochkin II, Ryzhova ON (2011) Assessment of Gaussian-4 theory for the computation of enthalpies of formation of large organic molecules. Struct Chem 22:1303

    Article  CAS  Google Scholar 

  23. Suntsova MA, Dorofeeva OV (2014) Use of G4 theory for assessment of inaccuracies in experimental enthalpies of formation of aliphatic nitro compounds and nitramines. J Chem Eng Data 59:2813–2826

    Article  CAS  Google Scholar 

  24. Dorofeeva OV, Ryzhova ON, Suntsova MA (2013) Accurate prediction of enthalpies of formation of organic azides by combining G4 theory calculations with an isodesmic reaction scheme. J Phys Chem A 117:6835–6845

    Article  CAS  Google Scholar 

  25. Dorofeeva OV, Suntsova MA (2015) Enthalpy of formation of CL-20. Comput Theor Chem 1057:54–59

    Article  CAS  Google Scholar 

  26. Suntsova MA, Dorofeeva OV (2015) Comment on “use of G4 theory for the assessment of inaccuracies in experimental enthalpies of formation of aliphatic nitro compounds and nitramines”. J Chem Eng Data 60:1532–1533

    Article  CAS  Google Scholar 

  27. Politzer P, Murray JS, Grice ME, DeSalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91:923–928

    Article  CAS  Google Scholar 

  28. Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  29. Singh HJ, Upadhyay MK, Sengupta SK (2014) Theoretical studies on benzo[1,2,4]triazine-based high-energy materials. J Mol Model 20:2205

    Article  Google Scholar 

  30. Hu A, Larade B, Dudiy S, Abou-Rachid H, Lussier LS, Guo H (2007) Theoretical prediction of heats of sublimation of energetic materials using pseudo-atomic orbital density functional theory calculations. Prop Explos Pyrotech 32:331–337

    Article  CAS  Google Scholar 

  31. Jaidann M, Roy S, Abou-Rachid H, Lussier LS (2010) A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J Hazard Mater 176:165–173

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision D01). Gaussian Inc., Pittsburgh

    Google Scholar 

  33. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127(12):124105

    Article  Google Scholar 

  34. Tarasenko NA, Tishenkov AA, Zaikin VG, Volkova VV, Gusel’nikov LE (1986) Adiabatic ionization energy of methylenimine. Russ Chem Bull 35:2196

    Article  Google Scholar 

  35. Smith BJ, Pople JA, Curtiss LA, Radom L (1992) The heat of formation of formaldimine. Aust J Chem 45:285–288

    Article  CAS  Google Scholar 

  36. Oliveira G, Martin JML, Silwal IKC, Liebman JF (2001) Definitive heat of formation of methylenimine, CH2=NH, and of methylenimmonium ion, CH2NH2 +, by means of W2 theory. J Comp Chem 22:1297–1305

    Article  Google Scholar 

  37. Ray JD, Ogg RA Jr (1956) The heat of formation of nitramide. J Phys Chem 60:1460–1461

    Article  CAS  Google Scholar 

  38. Gurvich LV, Veytz IV, Alcock CB (1989) Thermodynamic properties of individual substances, vol 1, part I, II. Hemisphere, New York

  39. Davis LP, Storch D, Guidry RM (1987) MINDO/3, MNDO and AM1 calculations for nitro compounds. J Energ Mater 5:89–142

    Article  CAS  Google Scholar 

  40. Sana M, Leroy G, Peeters D, Wilante C (1988) The theoretical study of the heats of formation of organic compounds containing the substituents CH3, CF3, NH2, NF2, NO2, OH and F. J Mol Struct (Theochem) 164:249–274

    Article  Google Scholar 

  41. Chen Z, Hamilton TP (1999) Ab initio calculation of the heats of formation of nitrosamides: comparison with nitramides. J Phys Chem A 103:11026–11033

    Article  CAS  Google Scholar 

  42. Zhang JQ, Ma HX, Xu KZ, Chen YS, Hu RZ (2010) Molecular structure and a density functional theoretical study on 2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT). J Chin Chem Soc 57:75–81

    Article  CAS  Google Scholar 

  43. Jorgensen KR, Oyedepo GA, Wilson AK (2011) Highly energetic nitrogen species: Reliable energetics via the correlation consistent Composite Approach (ccCA). J Hazard Mater 186:583–589

    Article  CAS  Google Scholar 

  44. Kirpichev EP, Titov LV, Rubtsov YI, Gavrilova LA (1968) The heat of formation of guanidine. Russ J Phys Chem 42:269–270

    Google Scholar 

  45. Baroody EE, Carpenter GA (1976) Heats of formation of propellant compounds (U), Rpt. NCWC/WOL-TR-76-77 by Naval Surface Weapons Center, Silver Spring, MD, pp 1–20 (cited from NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/)

  46. Serushkin VV, Sinditskii VP, Egorshev VY, Filatov SA (2013) Combustion mechanism of triaminoguanidine nitrate. Prop Explos Pyrotech 38:345–350

    Article  CAS  Google Scholar 

  47. McEwan WS, Rigg MW (1951) The heats of combustion of compounds containing the tetrazole ring. J Am Chem Soc 73:4725–4727

    Article  CAS  Google Scholar 

  48. Lobanov GA, Karmanova LP (1971) Enthalpy of formation of some organic substances. Izv Vyssh Uchebn Zaved, Khim Khim Tekhnol 14:865–867

    CAS  Google Scholar 

  49. Krien G, Licht HH, Zierath J (1973) Thermochemische Untersuchungen an Nitraminen. Thermochim Acta 6:465–472

    Article  CAS  Google Scholar 

  50. Pepekin VI (2009) Mechanism of detonation of non-ideal explosives. Dokl Phys Chem 429:227–228

    Article  CAS  Google Scholar 

  51. Cundall RB, Palmer TF, Wood CEC (1978) Vapour pressure measurements on some organic high explosives. J Chem Soc Faraday Trans 1(74):1339–1345

    Article  Google Scholar 

  52. Astakhov AM, Dyugaev KP, Kuzubov AA, Nasluzov VA, Vasiliev AD, Buka ES (2009) Theoretical studies of the structure of nitramines. I. Structure of 2-nitroguanidine and its alkyl derivatives. J Struct Chem 50:201–211

    Article  CAS  Google Scholar 

  53. Handrick GR (1956) Report of the study of pure explosive compounds. Part IV. Calculation of heat of combustion of organic compounds from structural features and calculation of power of high explosives, Rpt. C-58247 for the Office of the Chief of Ordnance, contract DA-19-020-ORD-47 by the Arthur D. Little, Inc., Cambridge, MA, pp 467–573 (cited from NIST chemistry webbook. http://webbook.nist.gov/chemistry/)

  54. Kapranov KO, Kolesov VI (2012) Determination of heat of combustion and enthalpy of formation of some tetrazine derivatives. Adv Chem Chem Technol 26:38–42 (in Russian)

    Google Scholar 

  55. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data 11(Suppl. 2)

  56. Pedley JB (1994) Thermochemical data and structures of organic compounds, vol 1. Thermodynamic Research Center, College Station

    Google Scholar 

  57. Gurvich LV, Veytz IV, Alcock CB (1990) Thermodynamic properties of individual substances, vol 2, part I, II. Hemisphere, New York

  58. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592

    Article  Google Scholar 

  59. Matyushin YN, Kon’kova TS, Titova KV, Rosolovskii VY, Lebedev YA (1985) Enthalpy of formation of guanidinium nitrate, perchlorate, and chloride. Russ Chem Bull 34:713–716

    Article  Google Scholar 

  60. Lee K-Y, Stinecipher MM (1989) Synthesis and initial characterization of amine salts of 3-nitro-1,2,4-triazol-5-one. Prop Explos Pyrotech 14:241–244

    Article  CAS  Google Scholar 

  61. Kon’kova TS, Matyushin YN, Miroshnichenko EA, Vorob’ev AB (2009) Thermochemical properties of dinitramidic acid salts. Russ Chem Bull 58:2020–2027

    Article  Google Scholar 

  62. Matyushin YN, Kon’kova TS, Titova KV, Rosolovskii VY, Lebedev YA (1985) Thermochemical properties of monoaminoguanidinium salts. Russ Chem Bull 34:716–719

    Article  Google Scholar 

  63. Matyushin YN, Kon’kova TS, Titova KV, Rosolovskii VY, Lebedev YA (1982) Enthalpies of formation of triaminoguanidinium chloride, nitrate, and perchlorate. Russ Chem Bull 31:446–449

    Article  Google Scholar 

  64. Koskinen JT, Koskinen M, Mutikainen I, Tilus P, Mannfors B, Elo H (1997) Experimental and computational studies on aminoguanidine free base, monocation and dication. Part II: acid-base properties, gas phase protonation energies and total energies of two tautomers of the free base. Z Naturforsch 52b:1259–1272

    Google Scholar 

  65. Koskinen JT (1998) Experimental and computational studies on aminoguanidine free base, monocation and dication. Part III: proton affinities of guanidine, aminoguanidine and glyoxal bis(amidinohydrazone). Z Naturforsch 52b:386–392

    Google Scholar 

  66. de Diego Perez, Martinez A (1993) Electrochemical study on TAGN: a differential pulse polarography determination. Prop Explos Pyrotech 18:93–99

    Article  Google Scholar 

  67. Westwell MS, Searle MS, Wales DJ, Williams DH (1995) Empirical correlations between thermodynamic properties and intermolecular forces. J Am Chem Soc 117:5013–5015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Foundation for Basic Research under Grant No. 14-03-00612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Dorofeeva.

Additional information

Paper in honor of Professor Magdolna Hargittai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2015_648_MOESM1_ESM.pdf

Supplementary data associated with this article: enthalpies of formation of methanimine, nitramide, guanidine and its derivatives calculated from isodesmic reactions using G4 or G4(MP2) energies (Table S1) and molecular properties used in Eq. (2), experimental, and calculated enthalpies of sublimation (Table S2). (PDF 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeeva, O.V., Ryzhova, O.N. & Sinditskii, V.P. Enthalpy of formation of guanidine and its amino and nitro derivatives. Struct Chem 26, 1629–1640 (2015). https://doi.org/10.1007/s11224-015-0648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0648-y

Keywords

Navigation