Skip to main content
Log in

Structure and energetical properties of metal pivalate chelates M(piv)3 (M = Al, Ga, In, Tl) by DFT calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structure-related DFT calculations for IIIA metal tripivalates [M(piv)3] (M = Al, Ga, In, Tl) were performed. On the potential energy hypersurface (PES) for the Al, Ga, In, and Tl complexes, only a molecular structure of C 3 symmetry based on a distortion of an antiprismatic MO6 coordination polyhedron is found as a minimum. The geometry of C 3v symmetry corresponds to the first-order saddle points on the PES. The analysis of internal rotation of the tert-butyl groups and plane chelate ring in pivalate molecules was performed also. The structural flexibility within the coordination polyhedron MO6 was found to increase along the series Al → Ga → In → Tl. According to the analyses of the electron density distribution (NBO and QTAIM), the central atom M has no appreciable effect on the geometry of the peripheral tert-butyl groups, so that the most significant differences occur in the coordination polyhedron MO6. The lengthening of the M–O bond and decreasing of the binding energy are correlated with the ionic radius of the metal atom M. This fact proves the ionic binding nature of the title molecules. Appropriate assignment of vibrational modes was carried out by usage of the potential energy distribution analysis among internal coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eley DD, Hazeldine DJ, Palmer TF (1973) Mass spectra, ionization potentials and related properties of metal-free and transition metal phthalocyanines. J Chem Soc Faraday Trans 2 Mol Chem Phys 69:1808

    Article  CAS  Google Scholar 

  2. Finazzo C, Calle C, Stoll S, Van Doorslaer S, Schweigery A (2006) Matrix effects on copper(II)phthalocyanine complexes. A combined continuous wave and pulse EPR and DFT study. Phys Chem Chem Phys 8:1942–1953

    Article  CAS  Google Scholar 

  3. Zhuravlev KP, Yakovlev YO (2005) Fizika tverdova tella (Russian) 47(8):1518–1521

    Google Scholar 

  4. Bloor LG, Carmalt CJ, Pugh D (2011). Coord Chem Rev 255:1293–1318

    Article  CAS  Google Scholar 

  5. Kamkin NN, Kayumova DB, Yaryshev NG, Dementiev AI, Malkerova IP, Alikhanyan AS (2012) Synthesis and thermodynamic characteristics of aluminum, gallium, and indium pivalates. Russ J Inorg Chem 57(10):1308–1312

    Article  CAS  Google Scholar 

  6. Kamkin NN, Kuz’mina LG, Kayumova DB, Yaryshev NG, Dementiev IA, Alikhanyan AS (2012) Synthesis and thermodynamic and structural characteristics of thallium(I) pivalate. Russ J Inorg Chem 57(9):1267–1271

    Article  CAS  Google Scholar 

  7. Belova NV, Dalhus B, Girichev GV, Giricheva NI, Haaland A, Kuzmina NP, Zhukova TA (2011) Struct Chem 22:393–399

    Article  CAS  Google Scholar 

  8. Girichev GV, Giricheva NI, Zhukova TA, Kuzmina NP (2011) Izv Vysh Uchebn Zaved Khim Khim Technol (Russian) 54

  9. Belova NV, Girichev GV, Haaland A, Zhukova TA, Kuzmina NP (2013) The molecular structure of tris-2,2,6,6-tetramethyl-heptane-3,5-dione indium: gas-phase electron diffraction and quantum chemical calculations. Struct Chem 24:901–908

    Article  CAS  Google Scholar 

  10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian, Inc Pittsburgh PA

  11. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  12. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  14. Igel-Mann G, Stoll H, Preuss H (1988) Mol Phys 65:1321–1328

    Article  CAS  Google Scholar 

  15. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  16. Metz B, Schweizer M, Stoll H, Dolg M, Liu W (2000) Theor Chem Acc 104:22–28

    Article  CAS  Google Scholar 

  17. Poppe J (Unpublished work)

  18. Igel-Mann G (1988) (Unpublished work)

  19. Peterson KA (2003) J Chem Phys 119:11099–111112

    Article  CAS  Google Scholar 

  20. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371. doi:10.1063/1.464303

    Article  CAS  Google Scholar 

  21. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70(2):560–571. doi:10.1139/v92-079

    Article  CAS  Google Scholar 

  22. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J Phys Chem 96(16):6630–6636. doi:10.1021/j100195a022

    Article  CAS  Google Scholar 

  23. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41–62

    Article  Google Scholar 

  24. Zhurko GA, Zhurko DA ChemCraft version 1.6 (build 312); version 1.6 (build 312) ed. http://www.chemcraftprog.com/index.html

  25. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  26. Todd A. Keith (2014) AIMAll (Version 13.01.27)

  27. Sipachev VA (1985) Calculation of shrinkage corrections in harmonic approximation. J Mol Struct (Theochem) 121(1–2):143–151

    Article  Google Scholar 

  28. Sipachev VA (1999) Vibrational effects in diffraction and microwave experiments: a start on the problem. In: Hargittai I, Hargittai M (eds) Advanced in molecular structure research, vol 5. JAI Press, New York, pp 263–311

    Google Scholar 

  29. Sipachev VA (2001) Local centrifugal distortions caused by internal motions of molecules. J Mol Struct 567–568:67–72

    Article  Google Scholar 

  30. Blatov VA, Proserpio DM (2013) TOPOS version 4.0. http://www.topos.samsu.ru

  31. Belova NV, Sliznev VV, Zhukova TA, Girichev GV (2011) Molecular structure and intramolecular rearrangements in tris-2,2,6,6-tetramethyl-heptane-3,5-dione complexes, M(thd)3 (M = B, Al, Ga, In, Tl) by DFT calculations. Comput Theor Chem 967:199–205

    Article  CAS  Google Scholar 

  32. Wiberg KB (1968) Application of the pople–santry–segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3):1083–1096. doi:10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  33. Waber JT, Cromer DT (1965) Orbital radii of atoms and ions. J Chem Phys 42(12):4116–4123

    Article  CAS  Google Scholar 

  34. Perrin CL (1991) Atomic size dependence of Bader electron populations: significance for questions of resonance stabilization. J Am Chem Soc 113:2865–2868

    Article  CAS  Google Scholar 

  35. Krasnov KS (ed) (1979) Molecular constants of inorganic compounds. Handbook (Russian). Khimiya, Leningrad

  36. Glushko VP (ed) (1971) The thermal constants of materials. Handbook (Russian). VINITI Moscow

  37. Collaboration: Scientific Group Thermodata Europe (SGTE). SpringerMaterials: The Landolt-Bornstein Database. Group IV Physical Chemistry (1999)

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grant No. 14-03-31784mol_a) the Deutsche Forschungsgemeinschaft (core facility GED@BI, Grant Mi477/21-1) and the “Regionales Rechenzentrum der Universität zu Köln (RRZK)” by providing the necessary computational resources. O. A. Pimenov thanks the Ministry of Education and Science of the Russian Federation (Project 11.9192.2014) and German academic exchange service DAAD (Project A/13/75242) for financial support. Yu. A. Zhabanov thanks the Ministry of Education and Science of the Russian Federation (Project 11.9166.2014) and German academic exchange service DAAD (Project A/13/75239) for financial support. Authors also thank Prof. N. V. Belova, Dr. V.V. Sliznev, and Prof. N. W. Mitzel for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Pimenov.

Additional information

Dedicated to Prof. Magdolna Hargittai on the Occasion of her 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenov, O.A., Zhabanov, Y.A., Pogonin, A.E. et al. Structure and energetical properties of metal pivalate chelates M(piv)3 (M = Al, Ga, In, Tl) by DFT calculations. Struct Chem 26, 1443–1450 (2015). https://doi.org/10.1007/s11224-015-0639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0639-z

Keywords

Navigation